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Preface 

 

DIGRAM is part of a larger statistical package, SCD, supporting “Statistical analysis of 

Categorical Data”. The program is based on DIGRAM, a DOS program in Kreiner (1989) 

dedicated to analysis of high-dimensional contingency tables by block recursive chain 

graphical models. DIGRAM has since then been expanded to cover other types of models 

and problems as well, while still focusing on problems that could be solved complete or 

partly by simple tests for conditional independence. The complete SCD package is not 

finished yet. These notes therefore only describe DIGRAM.  

 

The current version of DIGRAM supports the following types of problems: 

 

Discrete graphical modeling 

 

Analysis of high-dimensional contingency tables by chain graph models  

Exact conditional tests for conditional independence 

Analysis of ordinal categorical data 

Analysis of independence graphs 

 

Non-parametric loglinear analysis of ordinal categorical variables 

 

Analysis of marginal and conditional homogeneity of repeated measurements 

 

Stepwise MCA analysis of collapsibility across categories of multidimensional 

contingency tables 

 

Analysis of multivariate Markov chains 

 

Item analysis by graphical and log-linear Rasch models 

 

Analysis and modeling of item bias and DIF 

Analysis and modeling of local independence 

 Analysis of local homogeneity 

 

The purpose of these notes is first to give a short introduction to DIGRAM projects and 

the user interface of SCD and DIGRAM and second to give a brief presentation of the 
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types of analyses implemented in DIGRAM. Additional details on what goes on during 

the analysis will be presented elsewhere
1
. 

 

SCD and DIGRAM may be freely downloaded from the author’s homepage at 

www.biostat.ku.dk/~skm/skm/index.html 

 

                                                           
1
 A set of DIGRAM user guides (Kreiner 200?a-d) are being prepared. They may be downloaded from the 

author’s homepage at www.biostat.ku.dk when they are ready. 

http://www.biostat.ku.dk/
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Graphical models 

 

 

Introduction 

 

We start this introduction to DIGRAM with a short prologue introducing some notation 

and results pertaining to graphical models and independence graphs.  

 

A graphical model is a multivariate statistical model defined by a set of statements conc-

erning conditional independence of pairs of variables given (some of) the remaining 

variables. The reason for calling the models graphical is that the models are characterised 

by mathematical graphs – networks where variables are represented by nodes some of 

which are connected by undirected edges or directed arrows. A missing edge or arrow 

between two variables implies that a certain conditionally independence statement applies 

for these two variables. 

 

We distinguish between three different types of graphical models: 

 

1) Graphical models for symmetrical relationships where all variables are assumed 

to be on the same footing. 

2) Graphical regression models distinguishing between dependent variables and 

independent explanatory variables. Graphical regression models will typically be 

models for a multivariate set of dependent variables, but simple regression 

models with only one dependent variable is also included in this framework. 

3) Block recursive graphical models – often called chain graph models - with 

variables in a series of recursive blocks where all influences between variables in 

different blocks are assumed to work in one direction only. 
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Graphical models for symmetrical relationships 

 

The generic graphical model is a model of the joint distribution of a multivariate set of 

variables assuming symmetrical relationships among variables. These models in other 

words describe associations or correlations between variables rather than the effect of 

some variables on other variables. 

 

Definition 1.  

A graphical model is defined by a set of assumptions stating that certain pairs of variables 

are conditionally independent given the remaining variables of the model. 

 

We write X╨Y  when X and Y are assumed to be independent and X╨Y |Z when X and 

Y are conditional independent given Z in the sense that  

P(X,Y|Z) = P(X|Z)P(Y|Z) 

or equivalently  

P(X|Y,Z) = P(X|Z). 

 

Example 1. 

Let A, B, C, D, E, F be six variables. The following four assumptions define a graphical 

model: 

 

A╨C |B,D,E,F 

A╨F |B,C,D,E 

B╨D |A,C,E,F 

D╨F |A,B,C,E 

 

Note that all statements concerning local independence involve four conditioning vari-

ables. We will return to the question whether we always need to condition with the rest of 

the variables for two variables to be conditionally independent. 
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The model is called a graphical model because the defining properties are encapsulated 

in a mathematical graph, a set of nodes and edges between nodes, as shown in Figure 1. 

 

 
 

Figure 1. Independence graph defined by the following  

four assumptions of conditional independence: 

 

A╨C |B,D,E,F 

A╨F |B,C,D,E 

B╨D |A,C,E,F 

D╨F |A,B,C,E 

 

We call graphs defining graphical models for either independence graphs or interaction 

graphs. Visual representations of networks are not a new thing in multivariate statistics. 

They have been used systematically for path analysis and structural equation models for 

many years before graphical models even existed. Independence graphs are unusual, 

however, because they are mathematical graphs with properties that can be determined 

using graph theoretical algorithms to identify properties of the statistical model. Indep-

endence graphs in this sense are second order mathematical models. They are graph 

theoretical models of probabilistic models encoding some, but not all properties of the 

first order model. 
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The theory of graphical models will be assumed known by the reader. If not, you are 

urgently advised to consult some of the following references 

 

   Whittaker (1990), 

  Edwards (1995,2000) 

  Lauritzen (1996) 

  Cox and Wermuth (1996) 

 

Short introduction to the subject may be found in Edwards & Kreiner (1983), Whittaker 

(1993), Wermuth (1993) and Kreiner (1996).  

 

The main properties of independence graphs for discrete
2
 data can be summarised in the 

following way: 

 

Graphical models for discrete data are loglinear. If all variables are discrete then the 

model is a model for a multidimensional contingency table. Darroch, Lauritzen and 

Speed (1980) in their seminal paper on graphical models show that a graphical model for 

discrete variables is a loglinear model with generators defined by the cliques
3
 of the 

independence graph. The model shown in Figure 1 is thus a loglinear model with 

generators, ABE, ADE, CDE, BCEF. Note that maximal order of interaction among 

variables in cliques is always assumed. 

 

Graphical models collapse onto graphical marginal models. Collapsing over some of 

the variables of the model in Figure 1 will always lead to a new graphical model. Some of 

the unconnected variables in the complete graph may, however, have to be connected in 

the independence graph of the marginal model.  

 

                                                           
2
 Graphical models may be defined for both continuous variables and for mixed continuous and discrete 

variables. The basic definition of graphical models is the same for these types of data, but some of the 

properties of graphical models for discrete data differs to some extent from the properties of mixed discrete 

and continuous variables. 
3
 A clique in a graph is a maximal subset of complete connected nodes.  
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The conditional distribution of a subset, of the variables given the remaining variables 

will be a graphical model. Let V be the complete set of variables of the model. If V1  V 

then the independence graph of P(V1 | V\V1) is equal to the subgraph
4
 of V1. 

 

The separation theorem: Separation implies conditional independence. Two subsets of 

variables, U and V, are separated by a third subset if all paths from a variable in U to a 

variable in V move through at least one variable in W. When this happens, U and W are 

conditionally independent given W: U ╨ V | W. In Figure 1 D and F are separated by 

both (A,E,C) and (B,C,E). It follows that D ╨ F | A,E,C and D ╨ F | B,C,E. Conditional 

independence implied by separation is usually referred to as global Markov properties.  

 

Separation implies parametric collapsibility in loglinear models. The separation theor-

em for separate variables is a consequence of a more general result. If all indirect paths 

between two variables, X and Y, move through at least one variable in a separating sub-

set, S, then the model is parametrically collapsible unto the marginal XYS-table in the 

sense that all parameters pertaining to X and Y are the same in the complete model and in 

the marginal model, P(X,Y,S). This means that the association parameters relating to A 

and D in Figure 1 is the same in the complete P(A,B,C,D,E,F) models and in the marginal 

models of P(A,D,B,E) and P(A,D,C,E) because all indirect paths from A to D goes 

through both (B,E) and (C,E).  

 

Marginal models sometimes have a simpler parametric structure than implied by the 

marginal graphical model. This result is implied by parametric collapsibility. In Figure 

1, the marginal graphical model for P(A,D,B,E) is saturated. Parametric collapsibility 

implies that the ADC-parameters are constant across different levels of B and C not only 

in the complete model, but also in the marginal model. Therefore, P(A,D,B,E) must be a 

loglinear model defined by the following generators: ADE,ABE,DEB.  

 

Decomposition by separation of complete subsets
5
 leads to decompositions of statistical 

models implying collapsibility in terms of likelihood inference for certain types of 

                                                           
4
 A subgraph consists of a subset of nodes connected by the same edges as in the complete graph. 
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models. In Figure 1, the BED clique separates (A,D) from F implying that (A,D) and F 

are conditional independent given (B;C,E). The joint distribution can therefore be written 

as 

 

P( A B C D E F

P( A D E B C P( F|E B C P( B C E

P( A B C D E P( B C E F

P( B C E

, , , , , )

, | , , ) , , ) , , )

, , , , ) , , , )

, , )





 

 

For discrete models, the maximum likelihood estimate of the parameters of the loglinear 

graphical model, Figure 1, will result in estimates of P(B,C,E) which is equal to the 

observed marginal frequencies in the marginal BCE-table. Maximising the likelihood 

therefore becomes a question of maximising P(A,B,C,D,E) and P(B,C,E,F) separately. 

Parameters pertaining to A and D will be estimated in the marginal ABCDE table while 

parameters relating to F will be estimated in the BCEF-table. The model therefore collap-

ses into two components with respect to likelihood inference for AD-parameters and F-

parameters respectively. 

 

 

The topography of marginal models.  

 

The collapsibility implied by decomposition by complete separators motivate the 

following definitions: 

 

Let V be a subset of variables defining a marginal model while W is the subset of 

variables not included in the marginal model. We call W the exterior of V.  

 

Assume that the subgraph of W consists of a set of unconnected components, W = 

W1,...,Wr. For each Wi, we define the boundary, BiV, as all variables in V connected 

                                                                                                                                                                             
5
 A subset of nodes is complete if all nodes of the subset are connected in the graph. 
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directly to at least one variable in Wi. It follows that all Bi are complete in the 

independence graph of the marginal model for P(V).   

 

The border, B, of V is the union of all boundaries, B = iBi 

 

Variables in V\B and edges attached to at least one of these variables or to variables from 

two different boundaries will be referred to as the interior of V, V\B. 

 

It follows from the results on parametric collapsibility that all parameters relating to the 

interior of a marginal model are the same as in the complete model. If all boundaries are 

complete in the complete graph then likelihood inference concerning these variables will 

be the same in the marginal and the complete model. Parameters of the complete model 

describing relationships between variables in the same boundary of V are not accessible 

by analysis of the variables of V. We refer to the edges between variables in a given 

boundary as fixed edges because no analysis of V can justify that these edges are 

removed from the complete model. 

 

Finally we define the core of a given problem defined by certain parameters of the com-

plete model as the smallest marginal model where likelihood inference gives the same 

results as in the complete model. Results on decomposability of graphical models imply 

that there will always be one smallest core for any given model. In the model Figure 1, 

the core of the CF problem is the marginal P(B,C,E,F) model. 

 

 

 

Graphical regression models 

 

A graphical regression model is a multidimensional multiple regression model of the 

conditional distribution, P(Y | X) where Y and X are vectors of dependent and 

independent variables, Y = (Y1,..,Yr), and X =  (X1,..,Xs). Conditional independence 

assumptions define graphical regression models in the same way as for ordinary graphical 
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models. The assumptions are, however, restricted to assumptions concerning two 

dependent variables or one dependent and one independent variables, 

 

Yi ╨ Yj | Y1,..,Yi-1,Yi+1,..,Yj-1,Yj+1, .,Yr,X1,..,Xs 

Yi ╨ Xj | Y1,..,Yi-1,Yi+1,..,Yr,X1,..,Xj-1,Xj+1,..,Xs 

 

Apart from the restriction on the permissible set of assumptions independence graphs for 

graphical regression models are defined and play exactly the same role as in the basic 

graphical models discussed above. Figure 2 shows the independence graph for a 

regression model with three dependent and five independent models. Edges connecting 

independent variables have been drawn as fat lines to show that these edges are fixed in 

the model. Removing one of these edges would imply that two independent variables are 

conditionally independent given the remaining independent and all dependent variables – 

a statement that has no bearing on the conditional distribution, P(Y | X).  

 
Figure 2. Independence graph for a graphical regression model of P(a,c,h|b,d,e,f,g). 
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Chain graph models 
 

 

A block recursive model partitions a vector of variables V = (V1,…,Vk) into a number of 

subsets of variables  (U1,…,Ur) such that  ji UU   Ø for all (i,j) and 
i

iUV  into and 

writes the joint distribution of all variables as a product of conditional distributions:  




 
1

1

1 )(),..,|()(
r

rrii UPUUUPVP  

The models are called block recursive because each component may have more than one 

variable.  

 

We call the different blocks of a block recursive model for different recursive levels and say 

that Y Ui is at a higher level than X Uj if i<j. A block recursive model thus describes the 

effect of variables at lower labels on variables at higher levels. 

 

This takes us to the definition of chain graph models. 

 

Definition 2 

A chain graph model is a block recursive model where P(Ur) is a graphical model and each 

of the components P(Ui | Ui+1,..,Ur) are graphical regression models. 

 

Chain graph models are characterized by independence graphs where variables in at 

different recursive levels are connected by arrows pointing from lower to higher levels while 

variables at the same recursive level are connected by undirected edges. It follows from 

Definition 2 that two variables are unconnected if they are conditionally independent of all 

other variables at the same or lower levels.  

 

Figure 3 shows one such model with eight variables at three different levels.  
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Figure 3. Chain graph model for a model with eight variables at three different levels. 

Boxes have been drawn around each recursive block in order to put emphasis on the 

recursive structure. 

 

The model in Figure 3 is based on the following assumptions: 

 

Recursive structure:  

 P(a,b,c,d,e,f,g,h) = P(a,g,h | d,b,e,f,g) ∙ P(d | b,e,f,g) ∙ P(b,e,f,g)  

 

Conditional independence at Level 1: 

 a ╨ h | b,c,d,e,f,g    c ╨ b | a,d,e,f,g,h   c ╨ d | a,b,e,f,g,h   c ╨ h | a,b,d,e,f,g 

 h ╨ e | a,b,c,d,f,g    h ╨ f | a,b,c,d,e,g h ╨ g | a,b,c,d,e,f 

 

Conditional independence at Level 2: 
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 d ╨ f | b,e,g 

 

Conditional independence at Level 3: 

 b ╨ e | f,g 

 

A chain graph model may also be characterized by the independence graphs of the graphical 

(regression) models for each of the different levels of the model. The model, Figure 3, in this 

way is equivalent to two regression graphs and one conventional independence graph. The 

regression graph for Level 1 was shown in Figure 2. The remaining independence graphs 

are shown in Figures 4 and 5. 

 

 

Figure 4. Independence graph for the graphical regression model at Level 2. 
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Figure 5. Conventional independence graph for Level 3. 

 

The results concerning separation and decomposition described for conventional independ-

ence graphs extend to the (undirected) regression graphs and are therefore also applicable 

for analysis of chain graphs. It can be shown that additional results concerning separation 

and decomposition apply to the directed chain graphs if each recursive level only has one 

variable. We refer to Lauritzen (1996) for a systematic discussion of these results. 

 

 

Graphical modelling 

 

While analysis of a 5-8 dimensional contingency table is certainly not trivial, it is never-

theless fairly straightforward and has been discussed extensively in many different contexts. 

What DIGRAM offers for this kind of analysis is an approach - exact conditional tests and 
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tests for ordinal categorical data - that addresses some of the well-known technical problems 

with which this analysis is burdened (sparse tables, low power of tests, etc.). 

 

Analysis of high-dimensional data is a totally different world. To survive this kind of ordeal, 

you have to have a very explicit strategy formulated before the analysis starts and you have 

to recognize the difference between the primary substantive research problems and 

secondary problems related to completion of statistical models. Given these requirements 

and given that the primary problems may be operationalized as problems of association, we 

believe that the family of chain graph models is a good frame of inference and that 

DIGRAM may be of considerable help for your analysis. 

 

An idealized overall strategy for analysis of high-dimensional data should at the very least 

consist of the following components: 

 

1) An initial analysis of data (screening) aimed at formulation of a complete base 

model that you may use as a starting point for your analysis. 

 

2) Further specification and simplification of this model using appropriate exploratory 

model search strategies. 

 

The above two steps should specifically address secondary problems of model building. 

 

3) The definitive or specific analysis aimed at the substantive research problems and 

formulation of conclusions. This is not - except in special cases - something that you 

should approach in an exploratory manner. 

 

Procedures for model checking and for analysis of collapsibility properties of models onto 

marginal tables are integrated by DIGRAM in all steps of the above strategy.  

  

The two sets of assumptions underlying the recursive graphical models are treated quite 

differently during the statistical analysis.  
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Assumptions on recursive structure have to be formulated before the statistical analysis. 

They are regarded as part of the theoretical foundations determined partly by assumptions 

on causal structure and partly by the design of the study (which of course cannot be changed 

by the statistical analysis). 

 

Assumptions on conditional independence may to a certain extent be specified as a starting 

point for the analysis in which case it will be one purpose of the analysis to check on and 

improve these assumptions. The typical situation will however be one, where assumptions 

state that variables are associated (conditional dependence).  

 

Secondary problems will typically be concerned with simplification and parsimony. It will 

be the purpose of the analysis addressing these problems to search for evidence against 

conditional independence among secondary variables. If no evidence is found we usually 

assume that no direct interaction exists. 

  

The substantive (primary) research problems will also be stated in terms of both conditional 

association/dependence and conditional independence. The typical primary research 

hypothesis assumes that variables are associated. It is the purpose of the analysis to find 

evidence supporting association for which reason the focus of the final specific analysis will 

not in general be on parsimony and simplification. Quite the contrary, in fact. 
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The user interface 
 

 

 

You can start SCD the same way you start any Widows-bases application. Figure 6 

shows the opening window of the SCD environment: 

 

 

 

Figure 6. The SCD window 

 

 

DIGRAM contains two main windows: 

 

 DIGRAM’s main form where the statistical analysis of data is carried out, 

 DIGRAM’s Graph form where different types of interaction graphs are 

shown, edited and analyzed, 

 

and several smaller dialog forms that will be used during the analysis of data. 
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The DIGRAM environment 
 
 

DIGRAM is a command driven program with a graphical user interface with some menus 

and buttons that in some cases may make life a little easier for you. Figure 7 shows 

DIGRAM’s regular interface. In addition to the menus and buttons the form contains a 

large output window, where all output from the program will be written, a smaller (green) 

project window displaying some details on the current DIGRAM project and a small 

command field. Commands written in the command field at the bottom of the window 

will be executed after you enter carriage return (CR) if the field is in focus. 

 

 
 

Figure 7. DIGRAM’s main form. The output window shows the  

limitations of the current version of DIGRAM.  
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The buttons and menu items should be almost self-explanatory. You can at any time 

during the analysis 

 

 print, save append, read and erase output 

 open a new project 

 save the current graphical model 

 edit and/or execute commands on command files. 

 

The program uses standard windows controls for reading or saving files, setting up 

printers etc.  

 

To my experience menus rarely if ever are used, as commands are much more convenient 

for interactive statistical analyses and buttons are much faster to work with for routine 

handling of input and output. Menus are nevertheless included for compatibility with 

other windows programs. You may look through menus to get an idea about the things 

that are supported by DIGRAM and use them if you prefer to do so, but they will not be 

described in detail in these notes. 

 

Another way to get an idea about what you can do with DIGRAM is to enter a HELP 

command. The result is the list of all the commands implemented in DIGRAM shown in 

Figure 8. 

 

The information shown in the output window in Figure 7 is the information on limitations 

of the current version of DIGRAM. This information will always be shown when you 

start the program. If you erase this information and need to remind yourself about these 

limitations at a later point, you must use a “SHOW L” command. “SHOW P” will inform 

you about known errors in the program and how to avoid them (if possible) while “Show 

E”  will display information on the DIGRAM environment including information on the 

arrays allocated by the program. 
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Figure 8. The list of DIGRAM commands produced by the HELP command. Click first on 

a command and second on the Select button the command to transfer the command to the 

Command field of DIGRAM’s main form. Click on the Print button to print the list of 

commands on I the output window 

 

 

Click on the Graph button on DIGRAM’s main form (or enter a GRAPH command) to 

replace the main form with DIGRAM’s main form shown in Figure 9. 

 

The Graph form in many ways resembles the main form. You communicate with the 

program using commands, buttons and menu items. The form contains a graph window 

showing either the main project graph, a graph representing a graphical or loglinear 

Rasch model or an ad hoc graph that you have defined yourself. The main graph is of 

course the default graph. 

 

At the right of the form you will find two small fields. An output window at the top and a 

graph window at the bottom showing the variables included in the current graph. A 

number of commands are available for manipulation of the graph. These will be 

described in a subsequent chapter on editing, displaying and analyses of independence 
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graphs. The form also contains a number of buttons that you may use to edit graph and 

track bar for redefinition of the size of the nodes in the graph. The functionality of these 

items will be described in Appendix A on the graph editor.  

 

 
Figure 9. DIGRAM’s graph form 

 

 

To return to DIGRAM’s main form you can either click on the DIGRAM button or enter 

a DIGRAM command in the command field of the GRAPH form.  



 

 

20 

DIGRAM projects 
 

 

Figures 7 and 9 show the show the main form and the graph form immediately after a 

DIGRAM project called ‘AGERDEMO’ has been opened. The project uses data from a 

study of working conditions in Denmark using 14 out of a much larger data set. The var-

iables and some information on the recursive structure among variables and the number 

of cases included are shown on the main form (Figure 7).  The current graphical model is 

shown on the graph form (Figure 9). Behind this information lies a number of ASCII files 

containing both the original and recoded data, variable and category definitions, an inci-

dence matrix defining the interaction graph, and some output that it has been convenient 

to save during the analysis.  

 

The files are in general defined by the project name followed by an extension defining 

the contents of the file. The following file types define the standard files associated with a 

project: 

 

 The DEF file, project.DEF, contains the basic information needed to define 

the project.  

 The DAT file, project.DAT, contains the data set. The name of the DAT file is 

the only project file name that you may select yourself after you have decided 

on a project name. If you do not want to use the default name, the alternative 

name must be defined on the DEF file. 

 The VAR file, project.VAR, contains the definitions of the variables included 

in the project. Notice that the project is not required to use all the variables on 

the DAT file. Information on cases to be excluded from the project must be 

written on the DEF file. 

 The CAT file, project.CAT, contains category definitions. 

 The SYS file, project.SYS, contains a recoded data matrix. Only variables 

used by the project are included. 

 The TAB file, project.TAB, contains the same information as the SYS file in a 

more compact table format. 
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 The GRF file, project.GRF, contains information on the current graphical 

model. 

 TMP files, DIGRAM.TMP and project.TMP, used by DIGRAM during the 

analysis. These files will in most cases be erased by DIGRAM when you exit 

the program. 

 

In addition to the files mentioned above you might have additional files containing output 

and/or ad hoc graphs associated with a given program. You are free to call these files 

whatever you like to call them, but they will only be recognized, as belonging to the 

project if the file name is equal to the project name. 

 

It is assumed that all files except DIGRAM.TMP are saved in the same folder as the DEF 

file. You may save the files elsewhere during the analysis, but DIGRAM will not be able 

to find the files for you if you do so.  

 

IMPORTANT: When you start the program the current version of DIGRAM will try to 

create the temporary file, DIGRAM.TMP in the same folder where you have saved the 

SCD program. You therefore must not install SCD in a folder where you do not have 

permission to write. 

 

The DEF, DAT and VAR files must be defined when you open a project for the first 

time. CAT, SYS and TAB files will be created if DIGRAM cannot find these files. The 

GRF file will be defined during the analysis if you decide to save the current model. If 

the model was revised but not saved during the analysis you will be asked whether you 

want to save the model, when you exit the program. 

 

All files are ASCII files that you may read and edit using any kind of standard text editor. 

 

The contents and format of the files is described below, together with information on how 

to change the contents during the analysis. Examples will be given using the files associ-

ated with the UKU project enclosed among the examples distributed with DIGRAM. 
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The data for the UKU project originated in a study of side effects in a comparative drug 

trial. The data were analyzed and presented by Lingjærde et.al. (1987) and reanalyzed by 

Kreiner and Edwards (1990) using recursive graphical models and the DIGRAM program. 

 

The study concerned two different antidepressants: Drug 1 without anticholinergic effect 

and Drug 2, which has a marked anticholinergic effect. Side effects were measured prior to 

treatment and again after one two and three weeks on active drug. The project only includes 

information on a single item from the so-called "UKU side effect rating scale" describing 

side effect by four ordinal categories: 

 

        0: not present 

         1: mild degree 

        2: moderate degree 

         3: severe degree 

 

Additional information on the UKU scale may be found in Lingjærde et.al. (1987). 

 

The name for this project is UKU. This name is used for the default names of the files 

shown below. 

 

Data definitions: The DEF file. 

The DEF file defines the data matrix in the DAT file in terms of  

 

- the total number of variables/columns per case (not more than 700 per case in the 

DAT file), 

- filters or conditions for selection of cases. 
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The first record of the DEF file must contain the number of variables in the dataset (not the 

number of variables you are going to use in your analysis. Subsequent records should 

contain filter conditions (one per record) given by 

 

- a variable number, 

- a minimum value 

- a maximum value. 

 

There is no limit to the number of filters that you may include on the DEF file. Only cases, 

for who all values of filter variables belong to the intervals defined by the corresponding 

minimum and maximum values (both included), will be used in the analysis. 

 

Finally you may include information on certain files used by DIGRAM and change some of 

the default values of DIGRAM parameters. Most of these facilities are reminiscent of the 

DOS version, but obsolete in the current version for Windows and only included in order to 

make the program backwards compatible. The only important feature that you need to know 

about is the specification of alternative data files. To change the name of the DAT file 

associated with the program you must enter two lines on the DEF file: 

 

     FILES 

     D <DAT file name> 

 

The first line tells the program that information on files will follow on the next line while the 

“D” on the next line indicates that the following name is the name of the DAT file. 

 

 

The DEF file of the UKU project contains nothing but the number of columns in the data 

file (5). If we had only been interested in a project containing cases without side effects prior 

to treatment and if the data file was not called UKU.DAT, but CASES.DAT then the 

contents of the DEF file should have been as shown in Figure 10 
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Figure 10. The contents of a hypothetical DEF file for a UKU project of cases with no side 

effects prior to treatment and with data from a file called CASES.DAT 

 

Note that side effects prior to treatment is the fourth variable of the project according to the 

VAR file below. 

 

 

The data matrix: The DAT file. 

The DAT file contains the data matrix from which variables for the analysis may be extract-

ed. The file should be organized as a regular data matrix - one case at a time - as a space de-

limited
6
 ASCII file with each new case beginning on a new record. There are no restrictions 

on the number of records per case, nor on the way the variables are distributed across these 

records. It is only required that variables appear in the correct order and that there are no 

more than 700 variables per case. 

 

Only numerical values are permitted. Non-numerical codes will be treated as missing 

values
7
. Text variables with several words delimited by spaces are not permitted. 

 

The first ten records of the UKU.DAT are shown in Figure 11. 

 

 

 

 

 

 

 

 

Figure 11. The first six records of the UKU.DAT file 

 
                                                           
6
 Carriage Return (CR) may be used to separate variables instead of spaces. 

7
 Or rather: If a non-numerical code is encountered it will be given a value of –999999, which typically will 

be regarded as missing because it is lower than the minimum value of the variable ranges defined in the 

VAR file. 

5 

2 0 0 

FILES 

D CASES.DAT 

1 0 0 0 0 

1 1 1 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 1 0 0 
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Note, that you have to prepare your DAT file using some kind of standard program. You 

also have to take care of missing values for the variables, using numerical codes beyond the 

ranges defined in the VAR file. 

 

 

Variables: The VAR file. 

The VAR contains information defining the variables included in the project. These 

variables do no have to appear in the same order in the project as in the DAT file: 

 

1. The number of variables in the analysis (no more than 40 in the present version of the 

program). 

2. Definition of project variables. To define a project variable the following information 

is required:  

 

         A variable label - a single letter, which may be used for later reference to the 

 variable during the analysis. 

      

        A column number referring to the data matrix from which the variable is selected. 

 

        The number of categories defining the project variable. 

 

        The variable type (2:nominal/3:ordinal categories). 

 

        Minimum and maximum values of the original variable and one or more cut points 

        defining the categories of the project variables. Cut points always define intervals  

        including upper category boundaries. 

  

  3. The number of recursive blocks. 

  4. Cutpoint partitioning the project variables into the recursive blocks. 

  5. Up to 10 lines of Comments. (Optional). 

  6. Variable names up to 8 characters per variable (optional, but recommended).    

 

Comments and variable names may be interchanged. Otherwise the information should be 

given in exactly the order presented above. 
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A couple of conventions and rules must be followed to when the VAR file is written: 

 

- The number of  project variables should appear on a single record at the top of the 

file. 

- The information on project variables should appear space-delimited on two records 

per variable: 

  Record 1: <Label> <Column number> <Number of categories> <Type> 

  Record 2: <Minimum> <Cutpoint(1)>...<Last cutpoint> … <Maximum> 

 

- Standard variable types are: 

          2: nominal categories 

          3: ordinal categories 

- The intervals defining categories contains the cutpoints: 

  Category 1:      Minimum               values     cutpoint(1) 

  Category 2:      Cutpoint(1)          <   values    cutpoint(2) 

                           etc. etc. until 

  The Last category: The last cutpoint  <   values    Maximum 

- All values less than minimum or greater than maximum will be regarded as missing 

values. 

- The number of recursive blocks should appear on a separate record. 

- Variables must be defined in the correct order with the ultimate responses first and 

explanatory variables later. This means that recursive blocks may be reference to 

recursive cut points indicating the last variables in the recursive blocks. The 

recursive cut point may appear on separate records or on one record separated by 

blanks. If the last recursive cut point is less than the number of project variables, the 

remaining variables will always be treated as purely explanatory variables. 

 

The final part of the VAR file contains comments and variable names. 

 

Variable names must be initiated by a record containing the word "VARIABLES" (or at 

least the first three characters), followed by records containing variable labels and names 

separated by blanks. 
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Only the first 8 characters of the variable names will actually be used, but you may of course 

include as many as you like on the VAR file. 

 

A record containing "COMMENTS" will be taken to indicate that the contents of following 

records should be treated as comments. Only the first ten lines of comments will be used. 

 

Immediately after having read the last recursive cut point, the program will be in 

COMMENT mode and will remain so until "VARIABLES" appear. 

 

Figure 12 shows the contents of the UKU.VAR file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. The contents of the UKU.VAR file defining five project variables 

 

 

5 

D 5 3 3 

0 0 1 3 

C 4 3 3 

0 0 1 3 

B 3 3 3 

0 0 1 3 

A 2 3 3 

0 0 1 3 

T 1 2 2 

1 1 2 

4 

1 2 3 5 

Ratings of side effects in a comparative drug treatment. 

Side effects are rated pre-treatment (STATUS 0), one, two 

and three weeks after treatment (STATUS 1-3). 

Ratings were scored: 

0 : not present      1 : mild degree 

2 : moderate degree  3 : strong degree 

The last two categories have been collapsed for the 

analysis by DIGRAM. 

Treatment was by one of two drugs. 

VARIABLES 

T TREATMENT 

A STATUS 0 

B STATUS 1 

C STATUS 2 

D STATUS 3 
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The UKU.VAR file defines variables in the following way: 

 

Notice first that we are going to use all 5 variables of the data set. We did not have to do 

that, but could have requested an analysis of a subset of variables. The order of the project 

variables is not however the same as the order columns in the data matrix. 

 

The first project variable is given the label D: 

 

                   D 5 3 3 

                   0 0 1 3 

 

 

This variable is the fifth variable in the data matrix. The variable has three ordinal categories 

defined by collapsing of categories 2 and 3 of the original variable. 

 

The categories of D are given by  

 

      Minimum =  0 

      Cut points =  0 and 1 

      Maximum =  3. 

 

 

The three categories of D are therefore defined by the following values of variable 5 in the 

original data matrix: 

 

     Category 1 :  0     (not present) 

     Category 2 :  1     (mild degree) 

     Category 3 : 2-3   (moderate to strong degree) 

 

 

The name of variable D may be found in the list of variable names at the bottom of the file. 

Variable D is "STATUS 3", that is the measure of side effects after three weeks on drugs. 

 

Five variables, D, C, B, A, T are defined in this way. The column numbers of the original 

data matrix are 1, 2, 3, 4, 5. 
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The recursive structure is defined immediately after the variables in terms of the reference 

numbers: 

                        4 

                        1 2 3 5 

 

We have four recursive levels or blocks defined by four recursive cut points in the sequence 

of variables. 

              Level 1 : D 

              Level 2 : C 

              Level 3 : B 

              Level 4 : A and T. 

 

The recursive structure reflects underlying temporal structure of the variables: 

 

D  C  B  AT 

 

 

Categories: The CAT file. 

The CAT file contains category names for all project variables. CAT files are optional, but 

recommended. They may be created and modified before you start DIGRAM or at any time 

during an analysis. 

 

Each record of a CAT file must contain a label of a project variable a value indicating a 

category and the corresponding category name. The category names on the file may be as 

long as you wish, but DIGRAM will only use the first eight characters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The contents of the UKU.CAT file 

 

D 1 None 

D 2 Mild 

D 3 mod+strong 

C 1 None 

C 2 Mild 

C 3 mod+strong 

B 1 None 

B 2 Mild 

B 3 mod+strong 

A 1 None 

A 2 Mild 

A 3 mod+strong 

T 1 Drug1 

T 2 Drug2 

� 
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Graphs: The GRF file. 

The GRF files will in most cases be created by DIGRAM so you do not really have to worry 

about the way the information on the graph is formatted. The format of the file is free with 

blanks or <carriage return> as delimiters. 

 

The first record should have  

 

                    The number of variables/vertices 

                    The number of recursive levels 

 

The second record should have the cut points defining the recursive blocks in terms of the 

sequence of variables in the same way as in the VAR file. 

 

The third record contains variable labels in the correct order. 

 

The next records define the status matrix. The matrix should be symmetrical with status 

codes given by: 

 

           1 : conditional independence - no edge 

           2 : potential dependence        - an edge will be included 

           3 : conditional dependence    - a fixed edge included 

 

Status 3 point to a fixed edge, where a decision has been made, that two variables are locally 

dependent. None of the models searching strategies implemented in DIGRAM will consider 

associations with fixed edges. 

 

Status codes above 3 will indicate an edge for which special information is available. These 

codes will be used by certain automatic procedures of DIGRAM. 

 

The last part of the GRF file may have information on the coordinates of the nodes in the 

graph plot. This information must be initialized with a record containing the word 

"COORDINATES" followed by a record for each NODE containing 

 

                       The label 

                       the x-coordinate on the screen 

                       the y-coordinate. 
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One of the graphs considered for the UKU study is shown in Figure 14 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. A UKU.GRF file 

 

Note that labels and recursive structure are the same as in the UKU.VAR file. 

 

The graph assumes conditional independence between D and B, D and A and D and T. We 

have conditional independence between C and A and T, and we have independence between 

A and T. (The model implied is a Markov chain of order 1 including a short term effect of 

treatment). 

 

 

GRF files for ad hoc graphs 

You may at any time draw ad hoc graphs and save them on GRF files having the same 

format as the project GRF file. The only difference between an ad hoc GRF file and the 

project graph is that information on variable names are included on the ad hoc GRF file in 

the same way as variable names are included on the VAR files. 

 

The facilities for dealing with ad hoc graphs will be described in the notes on “Manipulation 

of DIGRAM files”. 

 

 

5 4 

1 2 3 5  

D C B A T  

3 3 1 1 1 

3 3 3 1 1 

1 3 3 3 3 

1 1 3 3 1 

1 1 3 1 3 

COORDINATE

S 

D 32 102 

C 96 102 

B 160 102 

A 223 102 

T 289 64 
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Files with recoded data: The SYS and TAB files 

The first thing that happens when DIGRAM attempts to open a new project, is that data is 

extracted and recoded from the DAT file. The recoded data is saved on two different files. 

First as a recoded data matrix on the SYS file and second as a table of counts on the TAB 

file. 

 

Categories are always enumerated from 1 to maximum number of categories on the SYS 

and TAB files while zero is reserved as the code for missing values. The TAB file contains 

records for all cells with positive counts in the multivariate contingency table created by all 

the project variables. Each cell in the table is defined by a record containing category values 

followed by the observed number of cases in the cell. 

 

Figure 15 and 16 shows (part of) the contents of the SYS and TAB files. It is seen on the 

TAB files that 27 cases with Drug 1 and 10 cases with Drug 2  has no side effect at all. 

 

 

 

 

 

 

 

 

Figure 15. Five records from the UKU.SYS file 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. The first five lines and the last five records on the UKU.TAB file 

 

 

 

1 1 1 1 1  

1 1 1 1 1  

1 1 1 1 1  

2 1 1 1 1  

3 1 1 1 1  

 

1 1 1 1 1 27 

1 1 1 1 2 10 

1 1 1 2 1 3 

1 1 2 1 1 4 

1 1 2 1 2 2 

.. .. .. 

3 3 2 1 1 1 

3 3 2 1 2 1 

3 3 2 3 2 1 

3 3 3 1 2 2 

3 3 3 3 2 1 
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Creating DIGRAM projects 
 

 

The bad news is that you have to create DIGRAM projects yourself. It is a common experi-

ence shared by most applied statisticians that moving data from a standard statistical progr-

am like SAS, SPSS or STATA to a specialized standalone program like DIGRAM takes in-

ordinately long time. Work is in progress developing programs and procedures that may 

ease the transition, but until this is finished you are on your own. 

 

We do believe that the work is manageable. You have to remember that 

 

1) DIGRAM only reads standard free formatted ASCII text files, 

2) DIGRAM only accept numerically coded data (including numerical codes for 

missing values). 

 

Variable definitions may seem cumbersome, but they are really not that bad once you have 

tried it a few times. To make things easier three commands are available opening a project 

definition dialog, where you can develop and test variable definitions before they are 

realized. The three commands are 

 

 EXPORT variables which exports variables from the current to a new project, 

 SPLIT variable which creates so-called split projects by stratification  

    according to the levels of the split variable, 

 CREATE  Which lets you open a create a new project from scratch. 

     

 

All three commands open the same dialog shown in Figure 17. 
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Figure 17. The “Create new DIGRAM project” dialog 

 

 

The project definitions of the current project will be shown in the column to the left if a 

project is already open when the dialog, Figure 17, is invoked. It will be assumed that the 

DAT file of the new project will be the same as the DAT file of the current project. 

 

Exporting variables from the current to a new project 

To export variables from the current to a new project you must write the labels of the 

variables you want to use in the “Select variable” field and then press the “Use variables” 

button. A star among the export variables will leave room open among the variables in 

the new project, where you can define a new variable. You are also welcome to change 

both the definitions of the variables that you have selected for export and the filters used 

for the current project. 
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DIGRAM will transfer category definitions for all the variables you have decided to ex-

port when you press “Use variables”. You can (and should if new variables have been 

included) edit the category definitions, if you want to do so. 

 

Defining split projects 

To define split projects enter a label in the “Split project definition” field and press the 

“Define split projects” button. DIGRAM will assume that you want to export all variables 

except the split variable to the new project, and will therefore write all the labels of the 

variables in the “Select variable” field. You can, however, edit this field removing 

variables or adding ‘*’s for new variables before you press “Use variables”.  

 

Creating new projects 

You can of course create completely new projects if you want to do so. Fill out all infor-

mation – project names, information on DAT names, variable definitions and category 

names – check the validity of definitions and press “Define project”. The project must be 

saved in the same folder as the DAT file. To be sure that this happens you should use the 

file browser to identify and select the DAT file. 

 

Checking definitions 

Press the “Check project definitions” when you think the project definitions are ready. If 

the definitions are usable, the “Create Project” will be enabled. Pressing this button final-

ly creates all the files you need for the new project, including a GRF file copying the 

parts of the current model that can be reused in the new project. 
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A short guided tour 
 

 

We will use the UKU project on side effects in a comparative drug trial described above to 

illustrate the basic features of DIGRAM. The project contains information on repeated 

ordinal measurements of side effects after treatment with categories going from no side 

effects to severe side effects. The analysis of these data will attempt to answer the following 

questions: 

 

1) Do the two different treatments differ with respect to the risk of side effects? 

2) Is the difference between treatments a short term and/or a long term phenomena? 

3) Do the risk of side effects increase or decrease with time? 

 

To answer these questions we will attempt to develop three different types of models: 

 

1) A chain graph model. 

2) A Markov Chain model. 

3) A generalized Rasch model taking heterogeneity of persons into account. 

 

During the guided tour of the analysis of the UKU project you will learn how to 

 

a) describe data, 

b) revise variable definitions, 

c) create and analyze tables, 

d) define, display and analyze graphical models, 

e) generate tables and hypotheses by analysis of graphs, 

f) test model based hypotheses, 

g) select models, 

h) check models, 

i) describe relationships, 

j) analyze data by loglinear models, 

k) analyze data by Markov chain models, 

l) analyze data by generalized Rasch models. 
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The guided tour is intended to give you a rough idea about DIGRAM’s capabilities. 

Technical details will be skipped and many commands will not be discussed here. The 

complete set of commands will (in time) be described in the user guide and technical 

details documented in separate papers dedicated to special topics. 

 

 

Examining and describing data 

SYS and TAB files will be generated the first time DIGRAM opens a new project. Before 

you proceed with the analysis you should however examine data to check whether variab-

les have been properly defined. Three commands are available for initial examination and 

description of data: 

 

FREQUENCIES  produces marginal frequencies for all variables (Figure 18). 

 

DESCRIBE variable generate tables showing the conditional distribution of the 

    remaining project variables given the variable referred to 

by the parameter of the DESCRIBE command (Figure 19). 

 

COLLAPS <variable> Examines whether or not some of the categories of the 

variable given as a parameter to the COLLAPS command 

are collapsible in the sense that differences between 

conditional distributions of other variables given these 

variables (Figure 20). Collapsibility across categories will 

be examined for all polytomous variables if the COLLAPS  

command is issued without parameters. 

 

 

Remember that you only have to include the first three characters of commands. 

 

Note that DESCRIBE and COLLAPS with more than two variables result in somewhat 

different analyses then those described here. 

 

Parts of the description of the UKU data are shown in Figures 18 to 20 below. P-values 

associated with Goodman and Kruskall’s  coefficients are here as elsewhere one-sided 

p-values. We recognize that the use of one-sided p-values is somewhat unorthodox, but 
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trust that you as a user will be able to multiply p-values with two whenever two-sided p-

values are appropriate. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. FREQUENCIES: Marginal frequencies are generated for all variables. 

This figure only shows the frequencies for the first project variable appearing 

 in column 5 of the original data matrix. Frequencies are presented first for the 

variable of the original data matrix and second for the categorized project variable  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. DESCRIBE T: Conditional distribution of project variables given treatment 

(T). Only the very first distribution is shown here. The current status refers to the 

relationships between variable defined by the current graphical project model.  

Reference no.   1 

Variable no.    5 

D: STATUS 3 

 

    D COUNT     PCT  CUMPCT 

---------------------------- 

    0    59   59.00   59.00    

    1    27   27.00   86.00    

    2    13   13.00   99.00    

    3     1    1.00  100.00    

 

TOTAL   100 

 

This variable was 

categorized 

 

Categories    count   pct 

 1     None      59  59.0 

 2     Mild      27  27.0 

 3 mod+stro      14  14.0 

 

Conditional distributions given TREATMEN(T) 

 

                     TREATMEN(T) 

                    Drug1 Drug2        Current status 

------------------------------------------------------------- 

                        %     %  

         STATUS 3(D)              ***     direct relationship 

 

                None  76.5  43.1 

                Mild  15.7  37.3 

            mod+stro   7.8  19.6 

 

               Total    51    51 

------------------------------------------------------------ 

***: At least one p-value less than or equal to 0.001 

 **: At least one p-value less than or equal to 0.01 

  *: At least one p-value less than or equal to 0.05 
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Figure 20. COLLAPS D: Examination of collapsibility across categories of variable D. 

Collapsibility across categories is examined in all two-way tables relating  

variable D to other variables. For ordinal variables collapsibility will only be  

considered for adjacent categories. Some evidence against collapsibility of  

the first two categories is found in the BD-table ( = 0.448, p = 0.034). 

 

 

The main purpose of the data description illustrated above is to examine whether there is 

any reason to change the definition of project variables. If this seems to be the case, you 

can change variable definitions selecting either the Data|Revise variables menu or invok-

ing the VARIABLES command. This will result open the dialogue shown in Figure 21, 

where you may edit the contents of the VAR file. 

 

Changing variable definitions may imply that category definitions also have to be modif-

ied. This will not happen automatically so you have to take care of this yourself. Select 

Data|Define/Revise categories or issue a CATEGORIES command to open the edit 

dialogue shown in Figure 22. 

 

 

 

 

 

 

 

+++++   Collaps of categories  ++++++ 

        D:STATUS 3     Categories =  1-2  3 

 

Test against     chi**2   df   p     gamma     P 

   C STATUS 2       0.5    2 0.798   0.172  0.260        

   B STATUS 1       3.5    2 0.173   0.448  0.034    +   

   A STATUS 0       1.5    2 0.479  -0.110  0.370        

   T TREATMEN       0.0    1 0.886   0.048  0.443        

 

+++++   Collaps of categories  ++++++ 

        D:STATUS 3     Categories =  1  2-3 

 

Test against     chi**2   df   p     gamma     P 

   C STATUS 2       1.1    2 0.584   0.255  0.197        

   B STATUS 1       0.9    2 0.643  -0.273  0.176        

   A STATUS 0       1.1    2 0.574   0.250  0.238        

   T TREATMEN       0.9    1 0.332   0.371  0.156        
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Figure 21. VARIABLES will open this dialogue, where variable definitions may be 

edited. You have to check the contents of the new variable definitions before you can save 

the results. New SYS and TAB files will be generated if the new variable definitions 

indicate that this is necessary. 
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Figure 22. CATEGORIES: Change categories in any way you want to. The current 

version of DIGRAM will not check the consistency of variable and category definitions. 

 

 

 

Creating and analyzing multidimensional contingency tables 1: Tests of 

conditional independence 

 

DIGRAM is first of all a program for analysis of multidimensional contingency tables. In 

this section we will show you the basics of creating and analyzing tables. You will learn 

how to 

 

1) tabulate data and display tables, 

2) create and test hypotheses of conditional independence, 

3) fit loglinear models, 

4) test for marginal and conditional homogeneity of repeated measurements, 

5) test for collapsibility across categories in multidimensional tables. 
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An important distinction is the difference between model-based and model-free tables. 

DIGRAM will fit chain graph models to the complete set of project variables. Collapsib-

ility properties of these models generates marginal tables and models in which specific 

problems may be addressed, and you at any point of the analysis ask for tables generated 

by the model in this way. You are however not restricted to looking at model-based 

tables. You can of course generate any table you want to and ask for any analysis of this 

table, as long as the problems to be addressed respect the recursive structure of the data. 

 

This section only describes model-free analyses of tables. Model based analysis will be 

described after the next section on definition and modification of graphical models. 

 

In the example in this section we disregard the measurement of side-effects prior to 

treatment focusing instead on a four-way tables with treatment and the three repeated 

measurements after treatment. The first problem we will address in connection with this 

table is the question of the degree to which the third measurement (D) depends on the 

first when both treatment (T) and the second measurement (C) is taken into account. 

 

The table we need to create thus is the DCBT-table. The hypothesis that we will test is 

the hypothesis of conditional independence of D and B given C and T, 

 

D ╨ B | C,T 

Two commands are needed to create the table and the hypothesis: 

 

TABULATE DCBT Creates the table
8
. 

 

HYPOTHESIS DB Creates the hypothesis. 

 

If you want to see the table before you do anything with it you have to enter 

 

SHOW T   Prints the table in a fairly compact format. 

 
                                                           
8
 Previous versions of DIGRAM permitted only tables with up to eight variables. This limitation has been 

relaxed, but tables are still limited with respect to the number of cells in the table. Use SHOW L to get 

information on the limitations in DIGRAM. 
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You can also get a look at the table if you add a T-, R- or C-parameter. To the TEST 

command described below. 

 

The results of using these commands are shown in Figure 24 below. During tabulation 

the following things happen: 

 

1) The table is counted. 

2) All margins are calculated. 

3) The marginal graphical model for the table is determined. 

 

All edges/arrows representing association parameters in the marginal model are fixed if 

the complete model is not parametrically collapsible onto the marginal model with resp-

ect to the parameters represented by the edges/arrows in the model. You can of course 

estimate the degree of association for all edges in the marginal model and test conditional 

independence between variables connected by fixed lines, but these results will have no 

bearing on the complete project model.  

 

To understand what goes on when the marginal model is created some knowledge about 

the complete model is necessary. In the example discussed in this section the graphical 

model shown in Figure 23 was used as the project model. Whether or not this model is 

adequate will be examined later in these notes. 

 

 

Figure 24 shows the information on the marginal table and model and the hypothesis 

generated by the above three commands. 
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Figure 23. The graphical model used as the project model in the guided DIGRAM tour  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. TABULATE DCBT, SHOW T and HYPOTHESIS DB 

 

The marginal DCBT model: 

 

Variables   DCBT 

        : D *+ + 

        : C +*++ 

        : B  +** 

        : T ++** 

 

Marginal loglinear model DCT,CBT   Fixed: CBT 

 

                 The DCBT table. 

 

          C=1            C=2            C=3       

     -------------- -------------- -------------- 

 T B  D=1  D=2  D=3  D=1  D=2  D=3  D=1  D=2  D=3 

------------------------------------------------- 

 1 1   30    1    2    1    1    1    1    1    0 

   2    5    2    0    1    1    0    0    0    1 

   3    0    0    0    1    1    0    0    1    0 

 2 1   10    3    2    1    0    0    2    1    1 

   2    3    2    0    4    6    1    1    1    2 

   3    0    1    0    1    2    1    0    3    3 

------------------------------------------------- 

 

1 Hypothesis: 

 

HYPOTHESIS  1:  D & B  |  C T 
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The three commands needed to generate the table and hypotheses are almost self-

explanatory. Once the table has been generated you may of course define all the 

hypotheses you would care to test in the given table.  

 

The parameters to the HYPOTHESIS command may consist of: 

 

 Pairs of variables: several hypotheses will be defined. 

 V* where V is a variable label, defines all possible hypotheses of conditional 

independence between V and other variables. 

 V- generates hypotheses of conditional independence of V and all variables 

not associated with V in the marginal model for the table. 

 V+ generates hypotheses of conditional independence of V and all variables 

that are associated with V in the marginal model for the table. 

 

In addition to HYPOTHESIS one additional command, ELABORATE
9
, generates 

hypotheses of conditional independence between two variables given some or all the 

remaining variables in the table. 

 

Once hypotheses have been defined you have to issue a TEST command to perform the 

test of significance. The way the test works and presents itself depends however on a 

number of different conditions and parameters, that we have to describe before we can 

look at test results. 

 

Test statistics: 

For ordinal and binary data DIGRAM will always use the partial -coefficient
10

 to meas-

ure and test monotonous relationships. P-values are always one-sided, so you may have 

to multiply by two, whenever you think a two-sided p-value would be more appropriate. 

                                                           
9
 The format of the ELABORATE command is as follows: ELABORATE V1 V2 n 

Where V1 and V2 are two variables and n is the largest number of conditioning variables included in the 

hypotheses. ELAB DB 1 thus generates three hypotheses: D╨B, D╨B|C, D╨B|T. ELABORATE DB 2 

includes the hypothesis shown in Figure 24. The elaboration hypotheses may be useful if one wants to 

examine the conditions under which an association between two variables disappears. 
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For nominal data you may choose between 
2
 tests and likelihood ratio deviances. The 

2
 

test is the default option, but you can change to likelihood ratio tests if you want to. The 

commands required for switching between test statistics are 

 

DEVIANCE selects likelihood ratio tests 

 

CHISQUARE selects 
2
 tests 

 

 

Asymptotic or exact p-values 

 

P-values based on the asymptotic distribution of test statistics are unreliable for tests of 

conditional independence in large sparse tables. Instead of asymptotic p-values you may 

select p-values based on the exact conditional distribution of test statistics given the suff-

icient margins under the null-hypothesis
11

. P-values calculated by DIGRAM are Monte 

Carlo estimates of these p-values and thus still approximations of the exact p-values. The 

difference between these and the asymptotic p-values are however that they are unbiased 

and that you control the precision of the approximate p-values yourself.  

 

Two commands let you switch between asymptotic and exact p-values: 

 

EXACT <nsim <seed>> Selects exact tests. NSIM is the number of tables generated  

for the Monte Carlo estimates. The default is 1000 tables. 

Seed is the seed for the random number generator. The  

default is 9. 

 

ASYMPTOTIC  Selects asymptotic tests. Asymptotic tests are the default 

option for statistical tests. 

 

                                                                                                                                                                             
10

 The relationship between two binary variables can also be measured by the odds ratio statistic and the 

Mantel-Haenszel statistic. There is however a one-to-one relationship between Goodman and Kruskall’s 

marginal -coefficient, so one is as good as the other. Things are not quite that simple for the partial  -coef-

ficients and the Mantel-Haenszel statistic but both statistics can be viewed as weighted sums of respectively 

stratified  coefficient and stratified odds-ratio statistics with no clear indication of one being better than the 

other.  We have therefore not cared to sacrifice the generality of the -coefficients in order to introduce 

odds-ratio statistics as an option for binary variables. This may however change in latter versions of 

DIGRAM. 
11

 See Kreiner (1987) for details of exact conditional tests in multidimensional contingency tables. 
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Global or local test results 

Test results consist of global summary test statistics and stratified local results where the 

test of conditional independence is performed in all strata defined by values of a single 

conditioning variable. 

 

The default option is global test only. If you also want local results you first have to 

invoke the LOCAL command: 

 

LOCAL   Selects local test results. 

 

To deselect global test results you must enter the GLOBAL command: 

 

GLOBAL   Selects global tests only. 

 

Note that DIGRAM will stay in local test mode until the GLOBAL commands has been 

given and visa versa. 

 

Having defined the parameters for the statistical tests you may enter the TEST command 

with parameters determining whether or not the table should be printed as well as the test 

results: 

 

TEST   Prints only test results 

TEST  T  Prints the table (with relative row frequencies) and test results 

TEST  O  Prints the table with observed counts and test results 

TEST  R  Prints the table (with relative row frequencies) and test results 

TEST  C  Prints the table (with relative column frequencies) and test results 

TEST  E  Prints the table (with expected counts
12

) and test results 

 

Note that the test mode will change to local if you want to print the table.  

 

                                                           
12

 Expected counts are calculated under the hypothesis of conditional independence being tested. 
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The parameters of the TEST command may be combined. TEST RCE prints a table with 

both expected values and relative row and column frequencies. 

 

Figure 25 presents the test results for the hypothesis shown in Figure 24 while Figure 26 

shows part of the table produced after a TEST T command.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. EXACT, LOCAL, TEST: The precision of the Monte Carlo estimates of exact 

p-values is indicated by 99 % confidence limits for the global test statistics. 

 

The local test statistics will also be summary test statistics unless there is only one condit-

ioning variable. The local -coefficient of 0.40 in the strata defined by no side effects at 

the second measurement (C=1) is thus a partial -coefficient for D and B given treatment 

T. Figure 26 shows the two strata contributing to the local test statistics for C = 1. Note 

that separate statistics are presented for each strata of the table shown after a TEST T 

****  Summary of test results  **** 

 

NSIM = 1000 tables generated for exact p-values 

 

-------------------------------------------------------------------------------------- 

                         p-values                           p-values 

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim 

-------------------------------------------------------------------------------------- 

 1:D&B|CT      22.5  22 0.432 0.617 (0.577-0.656)  0.39 0.040 0.024 (0.014-0.040) 1000    

-------------------------------------------------------------------------------------- 

----------------------------------------------------------- 

** Local testresults for strata defined by STATUS 2 (C) ** 

                          p-values               p-values 

 C: STATUS 2   X²    df asympt  exact  Gamma asympt  exact 

----------------------------------------------------------- 

 1:    None   9.57    6 0.1437 0.1740   0.40 0.1263 0.0840 

 2:    Mild   4.04    8 0.8535 0.9510   0.32 0.1870 0.1900 

 3:mod+stro   8.85    8 0.3551 0.6070   0.46 0.0588 0.0900 

----------------------------------------------------------- 

----------------------------------------------------------- 

** Local testresults for strata defined by TREATMEN (T) ** 

                          p-values               p-values 

 T: TREATMEN   X²    df asympt  exact  Gamma asympt  exact 

----------------------------------------------------------- 

 1:   Drug1  12.25   10 0.2685 0.4070   0.42 0.1733 0.1800 

 2:   Drug2  10.21   12 0.5974 0.6490   0.38 0.0456 0.0480 

----------------------------------------------------------- 
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command. P-values presented for isolated strata of the table is always asymptotic p-

values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. The two strata of the DB|CT table where C = 1.  

The remaining strata have been deleted. 

 

 

 

 

 

Conditioning variables: 

 

+---------------------------+ 

|  C STATUS 2 |  T TREATMEN | 

|-------------+-------------| 

|  1     None |  1    Drug1 | 

|  2     Mild |  2    Drug2 | 

|  3 mod+stro |             | 

+---------------------------+ 

 

+TREATMEN 

|+STATUS 2 

||     +STATUS 1 

||     | | D:STATUS 3        | 

TC     B |  None  Mild mod+s | TOTAL | 

---------+-------------------+-------+ 

11  None |    30     1     2 |    33 | 

     row%|  90.9   3.0   6.1 | 100.0 | 

    Mild |     5     2     0 |     7 | 

     row%|  71.4  28.6   0.0 | 100.0 | 

   mod+s |     0     0     0 |     0 | 

     row%|   0.0   0.0   0.0 |   0.0 |  X² =   5.7 

-------------------------------------+  df =   2 

   TOTAL |    35     3     2 |    40 |   p = 0.058 

     row%|  87.5   7.5   5.0 | 100.0 | Gam =  0.52 

-------------------------------------+   p = 0.159 

 

      some strata have been deleted here 

 

-------------------------------------+   

21  None |    10     3     2 |    15 | 

     row%|  66.7  20.0  13.3 | 100.0 | 

    Mild |     3     2     0 |     5 | 

     row%|  60.0  40.0   0.0 | 100.0 | 

   mod+s |     0     1     0 |     1 | 

     row%|   0.0 100.0   0.0 | 100.0 |  X² =   3.9 

-------------------------------------+  df =   4 

   TOTAL |    13     6     2 |    21 |   p = 0.423 

     row%|  61.9  28.6   9.5 | 100.0 | Gam =  0.22 

-------------------------------------+   p = 0.288 

    some strata have been deleted here 

-------------------------------------+   
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Analysis of multidimensional contingency tables 2: Marginal and 

conditional homogeneity. 

If you have repeated ordinal or nominal measurements or if you have comparable meas-

urements of different phenomena on the same nominal or ordinal scale you can test both 

marginal and conditional homogeneity. Two commands result lead to analyses of homog-

eneity: 

 

HOMOGENEITY <T>  Tests homogeneity of the two variables of interest  

     in the current hypotheses if these variables have 

     the same number of categories and the same scale 

     type. The T option produces tables in the same way  

     as for the TEST command. 

 

CMH variables   Results in tests of marginal homogeneity if the list 

of variables include all variables summarized in the  

table. If only a subset of variables is included in the 

list of variables, CMH results in tests of conditional  

homogeneity of the variables given the remaining 

variables and in tests of marginal association  

between the remaining variables and the repeated 

measurements. 

 

Technical details concerning marginal and conditional homogeneity will be discussed 

elsewhere
13

. The purpose of this section is simply to point out that these facilities are 

available. Notice also, that we are still developing the CMH analysis. The appearance of 

output from this procedure will probably change before it is completed. 

 

Figure 27 below shows the analysis of marginal homogeneity for a two-way tables produ-

ced by the HOMOGENEITY command while Figure 28 shows part of the analysis of 

conditional homogeneity in a three-way table. 

 

                                                           
13

 A technical report on “Marginal and conditional homogeneity” is under preparation. 
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Figure 27. Test of marginal homogeneity of UKU side-effects  

at the first (B) and third (D) measurement after treatment. 

 

 

Comments on Figure 27: 

Two tables are shown. First, the two-way table of B and D and second, a two-way table 

with the two margins to compared.  

 

Three principally different sets of test statistics are calculated, none of which give 

evidence against marginal homogeneity: 

D and B are assumed to be associated 

 

     +STATUS 1 

     | | D:STATUS 3        | 

     B |  None  Mild mod+s | TOTAL | 

-------+-------------------+-------+ 

  None |    44     7     6 |    57 | 

Expecte|  44.1   7.7   6.2 |  58.0 | 

  Mild |    13    12     4 |    29 | 

Expecte|  12.0  12.1   3.8 |  28.0 | 

 mod+s |     2     8     4 |    14 | 

Expecte|   1.9   8.2   3.9 |  14.0 | 

-----------------------------------+ 

 TOTAL |    59    27    14 |   100 | 

Expecte|  58.0  28.0  14.0 | 100.0 | 

-----------------------------------+ 

   R/C | Marginal freqs    | Total | 

-------+-------------------+-------+ 

   Row |    57    29    14 |   100 | 

   row%|  57.0  29.0  14.0 | 100.0 | 

   Col |    59    27    14 |   100 | 

   row%|  59.0  27.0  14.0 | 100.0 |  X² =   0.2 

-----------------------------------+  df =   2 

 TOTAL |   116    56    28 |   200 |   p = 0.923 

   row%|  58.0  28.0  14.0 | 100.0 | Gam = -0.03 

-----------------------------------+   p = 0.377 

 

------------------------------------------------ 

Analysis of homogeneity - dependent variables 

------------------------------------------------ 

** Global results *** 

------------------------------------------------ 

Homogeneity deviance: G² =     0.2 df =    2 p =  0.919 

        X² =     0.2 df =    2 p =  0.923 

Sign test: N(+) = 17   N(tie) = 60   N(-) =    23   

             X² =    0.9 p =  0.343 

          Gamma = -0.030 p =  0.377 

------------------------------------------------ 
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The first set of test statistics is compares the observed margins in the second table direct-

ly without fit of any specific model, but evaluates significance under the assumption that 

the association between measurements is as observed in the first table. The two test stat-

istics here is Everitt’s (1977) chi squared statistic and a  coefficient measuring the 

degree of association in the second table. Agresti (1984, p. 208-209) suggests a Mann-

Whitney test instead of the  coefficient. We notice that the two statistics are equivalent 

for comparison of two repeated measurements, but prefer the  coefficient because it can 

be generalized both to more than two measurements and used in connection with partial  

coefficients for analysis of conditional homogeneity. 

 

Second a deviance, G², between the observed table of count and a fitted table under the 

assumption of marginal homogeneity. The first table of Figure 27 shows both the 

observed and fitted table. The estimate of fitted values and the deviance based on this 

estimate is discussed in Kreiner (2001). 

 

Finally a chi squared sign test is also reported. 

 

Comments on Figure 28: 

Tables comparable to the tables of Figure 27 are produced but not here. The separate test 

statistics are calculated and summarized as global chi squared statistics and partial  coef-

ficients. In addition to the global statistics, stratified statistics are also presented in the 

same way as for tests of conditional independence. In the example here, where there was 

only one conditioning variable, the stratified statistics are the same as the separate test 

statistics, which would have been reported with each subtable, if they had been included 

in Figure 28. 

 

There is no evidence at all against conditional homogeneity. 
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Note, that there is no difference between the homogeneity deviance and Everitt’s X² stat-

istic in these examples. This is not always the case, but one may conjecture of course, 

that the two statistics are asymptotically equivalent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Test of condition homogeneity of UKU side-effects at the first (B)  

and third (D) measurement after treatment given treatment. 
 

We return to the DCBT table discussed in the previous section for an illustration of the 

analysis of homogeneity of more than two repeated measurements.  

 

There are three repeated measurements in the table and one additional covariate. The 

command, CMH DCB, will therefore result in an analysis of conditional homogeneity. 

We show only part of the results here. Some parts of the analysis by DIGRAM is still ex-

Conditioning variables: 

 

+-------------+ 

|  T TREATMEN | 

|-------------| 

|  1    Drug1 | 

|  2    Drug2 | 

+-------------+ 

 

------------------------------------------------ 

Analysis of homogeneity - dependent variables 

------------------------------------------------ 

** Global results *** 

------------------------------------------------ 

Homogeneity deviance: G² =     0.5 df =    4 p =  0.974 

                       Q =     0.5 df =    4 p =  0.975 

Sign test: N(+) = 17   N(tie) = 60   N(-) =    23   

             X² =    0.9 p =  0.343 

          Gamma = -0.039 p =  0.356 

------------------------------------------------ 

 

  +----------------------------------+ 

  |                                  | 

  | Marginal homogeneity in T-strata | 

  |                                  | 

  +----------------------------------+ 

                                            Sign test 

T df    G²  p       X²  p    Gamma  p     N+  N-   p 

---------------------------------------------------------- 

1  2   0.4 0.827   0.4 0.830 -0.03 0.427   7   9  0.617 

2  2   0.1 0.945   0.1 0.946 -0.04 0.371  10  14  0.414 

---------------------------------------------------------- 
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perimental and other parts require more information than it is possible to give in a short 

guided tour. Results relating to the basic test of conditional homogeneity appear as in 

Figure 29. 

 

Comments on Figure 29: 

The test statistics presented here are the same homogeneity deviances as in Figure 28. 

Several types of  coefficients will eventually be implemented. 

 

The marginal frequencies for the different treatments appear to be very different. Wheth-

er or not there is a significant difference between treatments with respect to side effects is 

however another matter. One can, of course, test marginal difference for each of the three 

measurements at a time, but the tests cannot be summarized into one simple global test 

statistic because of the correlation between measurements. It is however possible to fit 

models for the complete DCBT table assuming both conditional homogeneity and marg-

inal independence of side effects and treatment. It is therefore also possible to test marg-

inal independence of treatment and side effects given marginal homogeneity. 

 

Tests like that is actually already being tested right now. Output from the CMH proced-

ure automatically reports the results from these tests, and you are of course free to try 

them out (at your own responsibility of course).
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Figure 29. CMH DCB: Tests of conditional homogeneity of  

three measurements of UKU side-effects given treatment. 

 

 

 

Analysis of multidimensional contingency tables 3: Fitting loglinear 

models. 

The current version of DIGRAM has some very limited facilities for fitting general hier-

archical loglinear models. They will in time be expanded, but until that happens you are 

perhaps better advised to go elsewhere for this kind of analysis. 

 

What you can do with this version is: 

*** Test of Local homogeneity of D,C,B|T=1 

 

B:STATUS 1  0.740  0.200  0.060     50 

C:STATUS 2  0.780  0.140  0.080     50 

D:STATUS 3  0.760  0.160  0.080     50 

 

total       0.760  0.167  0.073    150 

 

G² =     0.8   df =       4   p =  0.9424      Finished at step no. 4 

 

 

*** Test of Local homogeneity of D,C,B|T=2 

 

B:STATUS 1  0.400  0.380  0.220     50 

C:STATUS 2  0.400  0.320  0.280     50 

D:STATUS 3  0.420  0.380  0.200     50 

 

total       0.407  0.360  0.233    150 

 

G² =     1.7   df =       4   p =  0.7882      Finished at step no. 6 

 

 

  +--------------+ 

  |              | 

  | Global tests | 

  |              | 

  +--------------+ 

 

 

*** Conditional homogeneity of D,C,B|T 

 

G² =     2.5   df =       8   p =  0.9625 
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1) You can calculate the deviance of the current marginal base for the table. 

2) You can calculate the deviance of any loglinear hierarchical model and test 

this model against both the base model and any other model. 

3) For ordinal data you can compare observed  coefficients with expected 

coefficient calculated for the currently fitted model. 

 

Analysis by loglinear models is executed through the dialogue window shown in Figure 

29. The command to activate this dialogue is 

 

LOGLIN  Activates the loglinear dialogue and transfers model information 

from  the marginal loglinear model for the current table to the 

   dialogue. 

 

Figure 29. LOGLIN activates the dialogue window. The output window of the loglinear 

dialogue shows the results of fitting the base model, the current model and a new model. 
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You have three models to work with in the loglinear environment: 

 

When the dialogue is activated DIGRAM transfers information on the marginal loglinear 

model for the current table to the base model of the dialogue. This model defines the con-

nection between the loglinear analysis and the current graphical project model. It cannot 

be changed at any point of the analysis. The base model has certain fixed generators that 

cannot be analyzed as long as you want to keep the connection between the loglinear an-

alysis and the graphical project model intact, because the graphical model is not param-

etric collapsible onto the current table with respect to the parameters associated with 

these generators. 

 

During the analysis you look at new models and designate some of these as the current 

model that you – at a given point of time during the analysis – consider adequate. New 

models may always be evaluated against both the base model and the current model.  

 

 

Defining, displaying and analyzing graphical models 

Graphical models are defined, displayed and analyzed in the Graph window (Figure 9). 

Most of the commands controlling the definition and analysis of models may also be 

executed for the project model in the DIGRAM window. 

 

The following types of interaction graphs can be accessed in the graph window
14

: 

 

 The project model. 

 Subgraphs of the project model 

 The marginal model associated with the current table. 

 IRT graphs of the loglinear graphical Rasch models defined in the GRM 

dialogue described below. 

 Ad hoc graphs defined by yourself. Ad hoc graphs may and may not have any 

connection to data. 

                                                           
14

 Additional types of graphs, e.g. graphs for Markov Chain models or graphs for Repeated measurements, 

may eventually be implemented. 
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The interaction graph for the project model is the default. 

 

Three types of commands are available in the graph window: 

 

 

Commands redefining graphs: 

 

ADD var1 var2   Adds an edge/arrow between var1 and var2 to the  

graph being shown in the graph window.  

 

DELETE var1 var2   Delete the edge/arrow between var1 and var2 in the  

graph being shown in the graph window.  

 

FIX var1 var2   Fixes the edge/arrow between var1 and var2 in the  

graph being shown in the graph window. Fixed  

edges between variables will are shown with thick 

lines in the graph and will not be removed by any 

of DIGRAM’s model selection procedures. 

 

PREVENT var1 var2  Prevents inclusion of an edge/arrow between var1  

and var2 in the graph by DIGRAM’s model 

selection procedures. 

 

 

NEW <status>   Initiates the graph with connections between variab- 

les defined by the status in the following way: 

Status 1 : all variables are unconnected. 

Status 2: all variables are connected by unfixed  

               edges. 

 

XPLANATORY   Fixes edges between all variables in the final 

     recursive block. These variables will be treated as 

     purely explanatory variables during the analysis. 

It will be assumed that there is no interest in an 

analysis of the association between these variables. 

      

SAVE    Saves the project model on the project’s GRF file. 
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READ G    Reads the project model from the project’s GRF  

      file. 

 

 

Commands for analyses of graphs
15

: 

 

SEPARATE pairs of variables  Identifies the smallest subsets of variables  

separation two variables in the sense that 

all indirect paths between the variables has  

to go through at least on of the variables in 

the separating sets. Separating creates 

so-called separation hypotheses. 

 

REDUCE pairs of variables  Identifies the smallest component of the 

      model with the connection between the  

      variables in the interior of the component. 

 

PATHS var1 var2    Identifies all paths with no shortcuts 

between two variables. 

 

MODEL variables    Determines the marginal model for the 

      list of variables. 

RELEVANCE var 1 var2 var3 var4 Examines the relevance of the relationship 

      between var1 and var2 for the analysis of 

      var3 and var4.  

 

 

Output from these commands will appear in the output area in the GRAPH window, but 

may be saved in the output area of the DIGRAM window. The results from an analysis of 

relevance is shown and discussed below. 

 

Output from the SEPARATE and DECOMPOSE commands may be accessed as hypoth-

eses in the DIGRAM window, if the graph being analyzed was the interaction graph ass-

ociated with the project model. 

 

The purpose of the RELEVANCE command is to determine whether or not the status of 

the association between two variables influence the way another relationship ought to be 

                                                           
15

 The commands described in this subsection may be invoked from the DIGRAM window where they will 

always be understood as commands relating to the project model. The only exception from this rule is the 

MODEL command that has a different meaning in the DIGRAM window. 
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analyzed. Figure 30 shows that the analysis of the long term effect of treatment (T) on 

side effects (D) depends on whether or not it is assumed that side effects at the initial 

measurement after treatment (B) influences side effects at the final measurement. Parts of 

the model checking discussed below (CHECK DT) is grounded on analyses of relevance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. RELEVANCE DB DT: D and T are separated by C if DB is not in  

the model and separated by C and B if it is in the model. In this case the 

 separators define the smallest irreducible components, the core, in which  

the relationship between D and T may be analyzed 

 

 

 

 
Commands controlling the appearance of graphs: 

 

PLOT variables 

 

HORIZONTAL variables 

 

VERTICAL variables 

 

The commands are always aimed at the graph being shown in the graph window. The 

following commands may be executed in the DIGRAM window, where they will always 

be taken as directed at the project graph. 

 

 

 

 

---------------------------------- 

Analysis of relevance of DB for DT 

DB is currently excluded 

---------------------------------- 

 

Separators for DT: 

 

DB excluded: C    

DB included: CB    

 

The core of the DT-problem: 

 

DB excluded: DCT 

DB included: DCBT 
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Generating tables and hypotheses by analysis of graphs 

Separation and reducibility defines hypotheses of conditional independence in marginal 

tables that are true if the variables are conditional independent in the complete project 

model. If the two variables are associated in the complete model they will also be related 

in the marginal model. The project model is however parametrically collapsible onto the 

marginal model with respect to the interaction parameters describing the association be-

tween the variables. Marginal tables and models defined by separation or reduction may 

therefore be of interest irrespective of whether the two variables are independent or not. 

 

Separation and reducibility hypotheses for the project graph are saved for by the program 

and can therefore be accessed by the program. 

 

Two commands will be of use here: 

 

SHOW H   Displays the current list of hypotheses defined by  

separation in or reduction of the project graph. 

 

 

CHOOSE <no.>  Creates the table in which the selected hypothesis 

    may be tested. Tabulation proceeds exactly as after 

    the TABULATE command.  

 

 

 

Testing model based hypotheses 

You do not have to create a table to test a hypothesis. The TEST command interprets two 

variables as parameters as a request for a test of conditional independence given the basic 

structure defined by the current project model: 

 

TEST VAR1 VAR2  Tests conditional independence of Var1 and Var2 given the  

separators of these variables in the project model. 

 

 

A test of long term treatment effect of UKU side effects for the model given in Figure 23 

is shown below.  
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Figure 31. TEST DT: C separates D and T in the graph in Figure 23. The hypothesis to 

be tested is therefore D ╨ T | C 

 

 

Note, that you can only obtain global test results from the test command used in this way, 

and that the DCT table will not be available for further analysis after the test shown in 

Figure 31. No table will be created 

 

 

Model selection 1: Initial screening 

Model searching in DIGRAM is generally based on a two-step procedure. The purpose of 

the first step is to identify an initial model that may be used as a convenient starting point 

for the actual model search. DIGRAM refers to this initial step as screening. The basic 

example is the screening of data for an initial graphical project model, but the approach is 

used also for screening for an initial loglinear graphical Rasch model in connection with 

DIGRAM’s item analysis discussed below. 

 

The initial screening for a graphical model generates a graphical model after analysis of 

all two-way tables and some three-way tables with project variables. 

 

To start the analysis enter 

 

SCREEN   Generates an initial graphical model by analysis of two- 

    and three-way tables. 

 

The screening of the UKU data and the resulting model is shown in Figures 32 and 33.  

 

 

****  Summary of test results  **** 

 

NSIM = 1000 tables generated for exact p-values 

 

-------------------------------------------------------------------------------------- 

                         p-values                           p-values 

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim 

-------------------------------------------------------------------------------------- 

 1:D&T|C        6.6   6 0.363 0.375 (0.337-0.415)  0.48 0.016 0.014 (0.007-0.027) 1000      

-------------------------------------------------------------------------------------- 
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Figure 32. SCREEN: Analysis of two- and three-way tables 

 

 

 
Figure 33. The initial screen model 

 

 

* Analysis of two-way tables 

 

  DCBAT 

 D*++ + 

 C+*+++ 

 B++*++ 

 A ++*+ 

 T++++* 

-------------------------------- 

* Analysis of hidden association 

 

  DCBAT 

 D*++ + 

 C+*+++ 

 B++*++ 

 A ++*+ 

 T++++* 

 

The final SCREEN model: 

Level of significance:  0.05 

 

Variables   DCBAT 

STATUS 3: D *++ + 

STATUS 2: C +*+ + 

STATUS 1: B ++*++ 

STATUS 0: A   +*+ 

TREATMEN: T ++++* 

 

 h : Hidden interaction 

 o : unused conditional independence 
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Some remarks on DIGRAM’s screening for an initial model: 

Details of this procedure can be found in Kreiner (1986). What is of special importance 

here is to remember that screening does not add up to a proper statistical analysis of your 

data and that the results of screening never should be reported as such. The sole purpose 

of the screening is to generate a model that may save us some time looking for a plausible 

model using proper techniques for model search. For this reason output containing test 

statistics obtained during screening has been disabled in this version of DIGRAM. You 

only get the summary of the results shown in Figure 32 and the suggested model seen in 

Figure 33. 

 

Some comments on what has happened in Figure 32 may nevertheless be in order. 

 

Screening consists of three steps: 

 

1) First an analysis of all two-way tables. The Results are summarized in the first 

adjacency matrix in Figure 32 where a ‘+’ indicates that a significant evidence 

of marginally association has been found. It is seen that there was no signific-

ant association between A and D. 

2) Second a check that insignificant marginal results do not hide significant con-

ditional association. In this case the AD association was examined in all three-

way tables containing A and D and one other variable. No hidden association 

was indicated. 

3) Finally the association between variables that seemed to be associated accord-

ing to the first two steps are reanalyzed in three-way tables containing the var-

iables in question and. If variables are found to be conditionally independent 

in just one table, the ‘+’ indicating association will be removed. In this case 

we see that not only A and D, but also C and D are conditionally independ-

ent
16

. 
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 It is easy of course, but too time-consuming  to create the three-way tables analyzed during the screening. 

In this way it is found that A and C seems to be conditionally given both B and T 
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Finally, interpreting the last adjacency matrix of Figure 32 as a adjacency matrix of a 

graphical model we arrive at the model shown in Figure 33. You should compare this 

model to the model in Figure 23. The screening model is somewhat more complicated 

than the model in Figure 23, which is to be expected, but it is actually quite close. The 

only difference is the association between D and B suggested by the screening model, but 

not included in the other model. 

 

The closeness of the screening model to a final plausible model is not only a question that 

has been confirmed, but is a consequence of the somewhat primitive approach used dur-

ing screening. Apart from random error, analyses of three-way tables will result in a 

model replicating the part of the structure of the true model, that are defined as strings or 

trees of either separate variables or larger cliques that are only connected by single var-

iables, because the separation properties for these parts of the models define hypotheses 

of conditional independence in three-way tables. Analyses of two-way tables will in the 

same way identify completely disconnected components of the model. Screening will 

therefore at least get some of the structure right from the very beginning. 

 

The default critical level for the statistical test executed during screening is 0.05. This 

choice was made deliberately even though it is obvious that a critical level this high in 

most cases will result in a fairly large number of type II errors. The screen model will 

therefore be too complex with more edges than really is needed. 

 

If it turns out that the screen model is too complex to be practical you can use one of the 

following two commands to generate a less complex model: 

 

SCREEN critical level The critical level must be given as an integer, A, with 

the critical level for the statistical tests calculated during 

screening will be equal to A/1000. 

 

SCREEN B A Bonferroni corrected 5 % level will be used during 

screening. 
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Model selection 2: Stepwise model search 

Taking the screen model (or any other model you might prefer) as the starting point we 

can proceed to the next and more serious problem of searching for models. 

 

Model searching has been relegated to it’s own dialogue shown in Figure 34. To activate 

this dialogue enter 

 

MODELSEARCH variables Initiates a search for a model structure connecting  

the variables in the variable list to the remaining 

variables of the model. 

  

 

 

Figure 34. MODELSEARCH D: Search for the structure connecting D to the rest of the 

UKU variables. The default strategy is backwards model search, implying tests of 

conditional independence of D and the variables connected to D in the current model. 

 

Comments on DIGRAM’s model search: 

First notice, that automatic model searching has been removed from this version of 

DIGRAM. The reason for this is that model searching of any kind is a problematic 
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activity. We may not be able to avoid it, but there is no reason to make model selection 

more arbitrary than absolutely necessary. Instead of giving the program and some more 

or less arbitrary criteria the responsibility for finding an adequate model, we feel that the 

researcher should have full control, but also full responsibility over what goes on.  

 

During model search you will either remove or add edges to the model. To help you 

decide what to do DIGRAM calculates different kinds of statistics the significance and 

suggests that the least significant edge should be removed or the most significant added. 

The p-value of the test statistics are however not the best criteria for deciding what to do. 

For ordinal variables where monotonous relationships are to be expected you should look 

at the size of the  coefficients measuring the strength of association and use this instead 

of the size of the p-values to guide you. First of all you should be guided by substantive 

arguments rather than purely formal criteria. If several edges could be removed from the 

model, removing the one with least substantive support – the one that you would have the 

hardest time to explain if it was kept in the model – should be eliminated first. 

 

There are two problems with informal strategies like that. The first is that the informal 

nature of the strategy prevents a formal testing of the strategy. It is hard to set up simul-

ation experiments to test the qualities of substance matter driven model searching comp-

ared to other strategies. The second problem is that such a strategy will be prone to errors 

reflecting misconceptions and prejudices on behalf of the one controlling the analysis. 

 

To avoid the second pitfall we suggest that you distinguish between primary and second-

ary problems. Primary problems are those that are especially important for you to solve in 

a correct way. Secondary problems on the other hand are of no particular interest (for the 

current study) apart from the fact that a correct solution of a secondary problem will in-

crease the chances of a correct solution to the primary problems. In the UKU example the 

relationships between the different measurements of side effects constitute the primary 

problem while the associations among the repeated measurements of side effects is of 

secondary importance.  
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If you are able to do this you are well advised to leave edges relating to primary problems 

alone as long as possible. Let the model search take care of the secondary structure of the 

model first and don not remove or add primary edges until you feel that you can’t get any 

further with the secondary. Knowing the nature of the UKU measurements we would of 

course expect that the risk of side effects on one time depend on the presence of side 

effects at the previous measurement. We would also acknowledge the possibility that the 

risk of side effects at the current measurement would depend on the presence of earlier 

measurements, but here our expectations would be a bit less confident. Irrespective of the 

size of assorted p-values we would remove the edge between a measurement at one time 

and the very first measurements before we removed the edge between the current meas-

urement and the one immediately before.  

 

In the UKU example substance matter considerations outlines an almost complete strat-

egy leaving us with no arbitrary choices among insignificant test results when we try to 

eliminate edges in the model. We cannot however expect things to be this simple in other 

applications. Decisions during model search will in practice often be prone to a certain 

degree of arbitrariness. 

 

To help you in these cases you may examine the consequences of making specific choic-

es for the evidence suggesting other choices. In DIGRAM this is referred to as an analys-

is of relevance. If the analysis suggest the two edges should be added to the model, the 

analysis of relevance examines the evidence suggesting that the second edge should be 

included conditionally given that the first one was included and visa versa. 

 

After these comments we can describe what you must do to help DIGRAM find an adeq-

uate model. The agenda you have to consider at each step contains the following items: 

 

 

Strategy 

 The two basic strategies are backwards and forwards model search, where backwards 

eliminates edges while forwards adds edges to the model. You can of course change back 
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and forth between these strategies during models search. In most cases each step starts 

with the current model, but you may decide to go backwards from a saturated model or 

forwards from an empty model. 

 

Backwards model search is default. If you want to start with a Forwards model search 

you can use the FORWARD command instead: 

 

FORWARD variables  Does the same as “MODEL variables” except that 

     the initial strategy is forwards instead of backwards 

 

For completeness, the following command has also been included. It is however redund-

ant: 

 

BACKWARD variables  Does the same as “MODEL variables”. 

 

The last two options on the strategy agenda have not been implemented yet. 

 

Search criteria 

DIGRAM uses critical levels for test statistics as search criteria. Remember that these 

criteria are only used for suggestions. DIGRAM will do nothing on it’s own based on 

criteria like those. 

 

In addition to criteria for adding or deleting edges there is an additional criteria for fixing 

edges in the model if the evidence against conditional independence appear to be very  

strong during the search for a model. The effect of fixing an edge is that this edge will not 

be examined by the model search procedure preserving both consistence of conclusions 

and saving time spent on model searching. 

 

Examination of either ordinal structure only or of both nominal and ordinal structure 

If substance matter considerations tell you that relationships between variables should be 

monotonous you should at disregard the 
2
 tests during model search to avoid type I err-

ors that will prolong the analysis and may lead to meaningless results. If you are 

concerned about overlooking something by not considering all the tests, you might 
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consider starting looking only for monotonous associations and then reintroducing the 
2
 

tests in the final steps. 

 

Exact or asymptotic p-values 

Exact p-values are generally to be preferred to asymptotic ones, but may be quite expens-

ive in terms of the time you need to use looking for models. To reduce time you may to 

begin with consider exact tests based on a fairly small number of random tables or you 

may use the so-called repeated Monte Carlo test, which will stop, when it is (almost) 

certain, that the result will not be significant. Invoking the EXA command before you 

start the search for models means that the model search dialogue will assume that that 

exact tests should be used. You may of course change your mind at any time while you 

search for the model. 

 

Repeated Monte Carlo tests are Monte Carlo tests that stops if the risk of obtaining a 

significant result at a 0.05 level becomes small (less than 0.001). You can select repeated 

Monte Carlo tests to save time instead of proper Monte Carlo tests during model search 

or before model search starts. The command is 

 

REPEATED <nsim <seed>>  Selects repeated Monte Carlo tests.  

Nsim = 1000 and seed = 9 are the default 

Values. 

 

Repeated Monte Carlo tests will also accept asymptotic p-values as evidence of insign-

ificance if the asymptotic p-values are much larger than the critical level assigned for the 

test (p > 0.20)
17

. 

 

Repeated Monte Carlo tests are also used in connection with model checking as discussed 

below. 
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 This is justified because exact p-values typically are larger than asymptotic p-values (Kreiner, 1987). 
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Action 

After each step of the model search procedure some action has to take place. Clicking on 

the “Do it” button executes the selected action, while “Continue” executes the action and 

continues the search for the model. 

 

Clicking on the “Stop” button terminates the model search. If a new model has been 

found you will be asked whether or not you actually want to use it. 

 

Dealing with output during model search. 

Output during model search appears in the small output field in the model search dialog, 

Figure 34. The contents of this window will be cleared at the beginning of each step. If 

you want to save it in order to document what went on along the way to the final model, 

you therefore have to save the output on the DIGRAM output window. 

 

Output produced during model search consists of test results in the same format as shown 

in Figure 31 plus a short summary and some suggestions based on the search criteria 

described above. 

 

Seven buttons relating to the output a located below the output filed. These buttons and 

their function are described below. 

 

Button Comments 

Results Redisplays the test results obtained during the current step of the model 

search process. 

Evidence Shows the insignificant test results during backwards search and the 

insignificant test results during forward search. This button is disabled 

when there are no significant test results. 

Relevance Initiates an analysis of relevance if test results suggest that more than one 

edge or arrow should change status. This button is disabled if test results 

suggest that no more than one edge should change status. 

History Summarizes what has happened during model search. The same kind of 

summary will appear automatically in the DIGRAM output window at the 

end of the model search. 

Save Saves the current output in the DIGRAM output window. 

Suggestions Repeats the suggestions based on the current test results. 

Clear Clears the output window. 
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Model checking 

We may distinguish between two different approaches seem to be considered for testing 

whether or not a specific model gives an adequate description of data: 

 

a) Global test or fit statistics evaluating the overall fit between model and data. 

calculating deviances as it for instance seem to be the established approach for 

generalized linear models is one example of model checking by global statist-

ics. Fit statistics based on information theory (e.g. AIC or BIC) are other ex-

amples of global model checking. Global model checking is sometimes enh-

anced by careful scrutiny of residuals identifying cases with unusual (accord-

ing to the model) outcomes on the variables of the model. 

 

b) Local evaluation of hypotheses derived as necessary – but not necessarily 

sufficient – consequences of the model. 

 

It is our experience that global checks of loglinear and graphical models for high-dimen-

sional contingency tables often are close to being both untrustworthy and useless. It is not 

unusual that p-values for deviances comparing loglinear models to the saturated model 

very often are to close to 1 to be comfortable. This problem reflects two problems. First, 

that standard tests are tests with almost no power accepting models that are much too 

simple, and second, that there are problems with the approximation of the distribution of 

the deviance by the asymptotic 
2
 distribution. Kreiner (1987) compares asymptotic p-

values to Monte Carlo estimates of exact p-values for a range of very simple models 

showing that asymptotic p-values definitely is not to be relied on. 

 

Another problem with the global approach to model testing is that the global tests are 

destructive tests in the sense that they may tell that there is something wrong with the 

model without providing any information on exactly what the problem is. Unless one 

wants to abandon the analysis if the model is rejected, one has to start looking for specific 

types of departures from the model. The most direct way to do this is to examine some 
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specific properties of the model in question, which is exactly what happens during local 

model checking. 

 

Finally, global criteria for fit of loglinear models only treats variables as nominal variabl-

es even though the vast majority of variables comprising contingency tables are however 

either dichotomous or ordinal. Violation of model assumptions because of monotonous 

relationships between variables are therefore in many cases conceivable, but standard 

approaches will have a hard time identifying this kind of problems. 

 

For this reason model checking in DIGRAM is strictly local. Instead of bothering with 

the unreliable global results DIGRAM proceeds directly to tests of conditional independ-

ence implied by the model, because conditional independence is the formative properties 

of these models. This is done in two different ways: 

 

 

CHECK    Results in tests of all separation hypotheses implied  

by the model.  

 

CHECK var1 var2   Tests separation hypotheses for all variables of  

Relevance for the analysis of the relationship 

between variables var1 and var2. 

 

 

We refer to the first approach as a local model check and to the second as a relevance 

check. 

 

Figure 35 below illustrates the check of the model in Figure 23. 
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Figure 35. CHECK: Tests of all separation hypotheses implied by the model in Figure 

23. Repeated Monte Carlo tests are used shortening the time used to generate random 

tables for the second hypothesis. Monte Carlo tests were abandoned for the third 

hypothesis because the asymptotic p-values were clearly insignificant (p > 0.20). 

 

 

Figure 35 discloses some evidence against the model in Figure 23. We note however, that 

p-values for the  coefficients are one-sided, whereas two-sided p-values in most cases 

would have been appropriate for model generated hypotheses. Also, the fact that three 

hypotheses are tested weighs against relying too strongly on weakly significant test res-

ults. That  coefficients suggesting strong positive association between D and B speaks 

on the other hand for taking the evidence seriously. 

 

All in all, the results of model checking in Figure 35 cannot be said to be conclusive
18

. 
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 We notice for the record that the deviance for the DCT,CBAT model for the conditional distribution of D 

given C,B,A and T is equal to 49.0. Due to zeros in the sufficient margins of this model it is necessary to 

reduce the degrees of freedom from 96 to 46 giving a p-value of 0.35. The deviance of the CBT,BAT 

Check of conditional independence assumptions 

 

3 Hypotheses: 

 

HYPOTHESIS  1:  D & B  |  C T 

HYPOTHESIS  2:  D & A  |  C T 

HYPOTHESIS  3:  C & A  |  B T 

 

****  Summary of test results  **** 

 

NSIM = 1000 tables generated for exact p-values 

 

-------------------------------------------------------------------------------------- 

                         p-values                        p-values 

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim 

-------------------------------------------------------------------------------------- 

 1:D&B|CT      22.5  22 0.429 0.593 (0.552-0.632)  0.42 0.031 0.025 (0.015-0.041) 1000 +   

 2:D&A|CT      18.4  14 0.188 0.172 (0.124-0.234)  0.30 0.124 0.110 (0.072-0.165)  308        

 3:C&A|BT      16.1  15 0.374                     -0.07 0.397             

-------------------------------------------------------------------------------------- 

Significance of  

X²        xx : p < 0.01    x : 0.01 <= P <= 0.05 

Gamma  ++/-- : p < 0.01  +/- : 0.01 <= p <= 0.05 (One-sided) 

-------------------------------------------------------------------------------------- 
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Figure 36. CHECK DT: Three relationships are important for the way  

the association between variables D and T has to be analyzed. 

 

Comments on Figure 36: 

D and B, and D and A, have to be conditionally independent for the collapsibility 

properties relating to D and T has to apply. If one of these assumptions is incorrect, the 

estimate of the association between D and T will be confounded. The model also assumes 

that D and C are related. If this is not the case collapsibility onto a smaller marginal then 

the one implied by the model will be possible. Estimation of the DT-relationship may not 

be confounded, but the standard error will be inflated. 

 

Some comments on the relationship between model searching and model checking: 

                                                                                                                                                                             

model for the conditional distribution of C given B,A and T is equal to 16.0. Degrees of freedom has to be 

reduced from 24 to 15 resulting in a p-value equal to 0.38. 

Relevance check for D&T 

 

 

3 Hypotheses: 

 

HYPOTHESIS  1:  D & B  |  C T 

HYPOTHESIS  2:  D & A  |  C T 

HYPOTHESIS  3:  D & C  |  T 

 

The first 2 hypotheses must be accepted 

 

 

****  Summary of test results  **** 

 

NSIM = 1000 tables generated for exact p-values 

 

-------------------------------------------------------------------------------------- 

                         p-values                           p-values 

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim 

-------------------------------------------------------------------------------------- 

 1:D&B|CT      22.5  22 0.429 0.593 (0.552-0.632)  0.42 0.031 0.025 (0.015-0.041) 1000    +   

 2:D&A|CT      18.4  14 0.188 0.172 (0.124-0.234)  0.30 0.124 0.110 (0.072-0.165)  308        

 3:D&C|T       22.0   8 0.005 0.013 (0.006-0.026)  0.59 0.000 0.000 (0.000-0.007) 1000 x ++  

-------------------------------------------------------------------------------------- 

Significance of  

X²        xx : p < 0.01    x : 0.01 <= P <= 0.05 

Gamma  ++/-- : p < 0.01  +/- : 0.01 <= p <= 0.05 (One-sided) 

-------------------------------------------------------------------------------------- 
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It should be obvious to anyone that the demarcation line between model checking and 

model search is not very clear. In fact the procedure for local model checking is nothing 

less than a forward step in the strategy for model search implemented in DIGRAM. This 

is no coincidence of course, but it emphasizes that strict model checking is impossible.  

 

The circularity problems that this creates may be seen from two different angles. From 

one viewpoint we may argue that model searching proceed along the following strategy: 

 

Initialization: 

Select an initial model. The model selected at any given point of time is referred to as the 

current model. 

 

Step: 

Check the adequacy of the current model. This check has to be fairly comprehensive. If 

the model is adequate we stop. Otherwise we 

 

 generate a set of candidate models, 

 perform a less comprehensive check each of these models, 

 select on of these models as the current model, 

 repeat the step. 

 

From the point of view of the model checking we start with the ideal situation where we 

– or the researcher responsible for designing the study and collecting the data – are able 

to construct a plausible model for the data based strictly on subject matter considerations: 

 

Initialization: 

Construct a plausible model. 

 

Model check: 

Examine the adequacy of the model. Proceed to the final part of the analysis if the model 

fits the data. 
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Model search: 

Search for a better model. Return to check the model when you have found a new model. 

 

The only difference between the two approaches is the nature of the initial model. Model 

searching simply starts with a convenient model while model checking and improvement 

starts with a model that we actually expected to believe in. Apart from the rare cases 

where we hit the mark the first time, the end result is a model partly based on speculation 

and partly on what is found in data. 

 

Describing relationships 

We assume that one of the purposes of doing an analysis by graphical models is to find 

out how to control for confounding and effect modification of a limited number of spec-

ific relationships. Unless one want to condition with all remaining variables one has to 

determine how the complete model collapses onto specific relationships. This is done by 

identifying all minimal sets of separators of the pair of variables in question leading to 

marginal tables where the association parameters of interest are the same as in the model 

for the complete table. The marginal models for such tables are loglinear where the quest-

ion of effect modification is a question of whether or not the two variables of interest are 

part of the same higher order interactions.  

 

To obtain all available information on a specific relationship enter 

 

 

DESCRIBE Var1 Var2  Analyses the relationship between Var1 and Var2 

 

 

Information obtained by this command includes 

 

 The marginal two-way table (Figure 37). 

 

 Test of all separation hypotheses including 

 

 Information on the loglinear structure of the marginal tables in which sep-

aration hypotheses may be tested. This information includes information 



 

 

78 

on potential effect modificators of the relationship between Var1 and Var2 

(Figure 38) 

 

 Local test results (Figure 39). 

 

 Analysis of homogeneity of local  coefficients (Figure 40). 

 

 Fit of a loglinear model that assumes that there are no higher order 

interaction involving Var1 and Var2 (partial relationship) (Figure 41). 

 

 Standardized parameters of the two-way interactions between Var1 and 

Var2 assuming no higher order interaction (Figure 42). 

 

 Fit of a loglinear model assuming conditional independence between Var1 

and Var2 and calculation of the expected marginal  coefficient under the 

assumption of conditional independence (Figure 40). 

 

 A summary in epidemiological terms concerning confounders and effect 

modificators of the Var1 – Var2 relationship (Figure 44). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. DESCRIBE DT: The marginal relationship between D and T. 

 Side effect seems to be more serious for Drug 2. 

Table 1. The DT distribution. 

 

     +TREATMEN 

     | | D:STATUS 3        | 

     T |  None  Mild mod+s | TOTAL | 

-------+-------------------+-------+ 

 Drug1 |    38     8     4 |    50 | 

   row%|  76.0  16.0   8.0 | 100.0 | 

 Drug2 |    21    19    10 |    50 | 

   row%|  42.0  38.0  20.0 | 100.0 |  X² =  12.0 

-----------------------------------+  df =   2 

 TOTAL |    59    27    14 |   100 |   p = 0.003 

   row%|  59.0  27.0  14.0 | 100.0 | Gam =  0.57 

-----------------------------------+   p = 0.000 
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Figure 38. DESCRIBE DT: D and T are separated by C. The Marginal DCT model is 

saturated. The relationship between D and T may be modified by C. Finally the (fixed) 

relationship between C and T  cannot be analyzed here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. DESCRIBE DT: Local tests of conditional independence of D and T 

Separation hypothesis: 

 

HYPOTHESIS  1:  D & T  |  C 

 

  +----------------------+ 

  |                      | 

  | Marginal model: D|CT | 

  |                      | 

  +----------------------+ 

 

The marginal model is graphical 

 

Cliques of the marginal graph: DCT 

Fixed interactions           : CT 

Collapsibility:                Strong. 

 

Estimable parameters         : D,DC,DT,DCT 

 

 

The DT interaction may be modified by C 

 

 

****  Summary of results  **** 

 

NSIM = 1000 tables generated for exact p-values 

 

-------------------------------------------------------------------------------------- 

                         p-values             p-values 

Hypothesis       X²  df asymp exact 99% conf.int. Gamma asymp exact nsim 99% conf.int. 

-------------------------------------------------------------------------------------- 

 1:D&T|C        6.6   6 0.363 0.375 0.337 - 0.415  0.48 0.016 0.014 0.007 - 0.027 1000      

-------------------------------------------------------------------------------------- 

----------------------------------------------------------- 

** Local testresults for strata defined by STATUS 2 (C) ** 

                          p-values               p-values 

 C: STATUS 2   X²    df asympt  exact  Gamma asympt  exact 

----------------------------------------------------------- 

 1:    None   6.03    2 0.0491 0.0390   0.59 0.0169 0.0110 

 2:    Mild   0.10    2 0.9514 1.0000   0.06 0.4416 0.3450 

 3:mod+stro   0.44    2 0.8040 1.0000   0.24 0.2905 0.2010 

----------------------------------------------------------- 
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What you see in Figures 38 and 39 is of course the same results that you could get out of 

tabulating and testing as discussed at the very beginning of the guided tour. We assume 

however that the DESCRIBE command is to be used at the end of the analysis, where the 

model is ready and where some conclusions concerning specific relationships has to be 

formulated. Figures 38 and 39 tell us that the marginal association between D and T is a 

somewhat confounded expression of the true conditional relationship between the two 

variables. The marginal and partial  coefficients suggest however that the degree of con-

founding is minor and perhaps inconsequential. 

 

The local  coefficients are somewhat different form each other suggesting that the long 

term direct effect of treatment on side effects are modified by side effects at the previous 

measurement. The effect of treatment is strong and significant if there was no side effects 

at the previous measurement, but weaker and insignificant if side effects were present.  

 

The two different conclusions – almost no confounding or effect modification – are very 

different and not compatible. The analysis is therefore not over until a choice has been 

made between these conclusions. The rest of the description of relationships attempts to 

solve this problem. 

 

Effect modification is best represented as higher order interaction in loglinear models: 

Effects are modified if higher order interactions are present and not modified if there is 

no higher order interaction. From this point of view, the question of whether or effect are 

modified should be a simple one, requiring nothing but standard tests of hypotheses of 

vanishing higher order interaction. We want however to be a little more careful here. 

Standard techniques for analysis of multidimensional tables by loglinear models 

disregard the ordinal nature of variables and the fact that relationships often are 

monotonous. The power of tests for higher order interactions is therefore less than 

impressive. 
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Instead we suggest an analysis focusing first on the local  coefficients and only second 

on the loglinear structure. The first question we want to ask therefore is whether or not 

the  coefficients in Figure 39 provides sufficient evidence to conclude that the effect of 

treatment is stronger when side effects were not present at the previous measurement than 

when side effects were present. This question is answered in Figure 40. 

 

Figure 40 first present an alternative partial  coefficient calculated as a weighted sum of 

the local  coefficients
19

. 

 

The next part of Figure 40 shows the local  coefficient with corresponding standard 

errors. Below this table a 
2
 test of homogeneity of  coefficient is reported. The diff-

erences between the local  coefficients are after all not sufficient evidence against 

homogeneity of the local  coefficients. 

 

Finally results from a stepwise multiple comparison analysis are reported. Each step 

compares adjacent  coefficients and collapses the least significantly different coeffic-

ients until either all coefficients have been collapsed or the remaining coefficients are 

significantly different at a 1 % level.  

 

In the first step here  coefficients for situation where side effects were present at the 

previous measurements are collapsed and replaced with a weighted mean of 0.15. In the 

final step this value is compared to the 0.59 values observed if no side effects were 

present at the earlier measurement. The difference is not significant. The conclusion 

therefore remains the same: Local  coefficients seem to be homogenous. 

 

The analysis of homogeneity of the  coefficients in Figure 40 suggests that C does not 

modify the effect of T on D. We have to be a little careful here. The  coefficients are 

non-parametric rank correlation coefficients. Unless both variables are dichotomous 

                                                           
19 If the hypothesis of homogenous  coefficients is correct the weighted coefficient is actually more 

precise than the ordinary partial coefficient.
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results concerning homogeneity of coefficients cannot automatically be interpreted as 

evidence of no higher order interactions in the loglinear DCT model. 

 

In addition to looking at  coefficients we therefore also have to examine how well a 

model with no higher order interactions fits the data. This is done in Figure 41. The dev-

iance also provide no arguments against partial association (p = 0.65).  

 

The question of how best to present the parameters of loglinear models has never had a 

satisfactory solution. The table in Figure 41 is perhaps an unconventional solution to this 

problem. Instead of presenting parameters summarizing to zero across all levels of var-

iables or parameters where parameters for certain reference categories have been set to 

zero, we present standardized
20

 parameters based on the assumption that it will be of int-

erest to compare the conditional association between variables to the marginal in order to 

evaluate the degree of confounding implied by the model. The table shows both the obs-

erved marginal association between the two variables and a raked table with the same 

row and column margins as the observed table but with the same degree of association – 

the same loglinear parameters - as found in the fitted conditional association between D 

and T. 

Fitting a table of parameters to the same margins of the observed table has the implicat-

ion that statistics calculated on the marginal table can also be calculated for the fitted 

table. Figure 41 thus presents and compares -coefficient for both the marginal and the 

standardized partial association. The standardized partial  coefficient is much smaller 

than the marginal, suggesting a high degree of confounding. The hypothesis of condition-

al independence may also be tested using the standardized partial coefficient as a test stat-

istic. The evidence against conditional independence is significant. Finally Figure 41 

presents results based on a Mantel-Haenszel procedure rather than the partial  coeffici-

ents. These results will be discussed in a later section on Gamma coefficients. 

                                                           
20

 We refer to Agresti (1990) for a discussion of standardized and raked tables. 
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Figure 40. DESCRIBE DT: Analysis of homogeneity of local  coefficients 

 

+-----------------------------------------------+ 

|                                               | 

| Analysis of homogeneity of Gamma coefficients | 

|                                               | 

+-----------------------------------------------+ 

 

 

Gamma =  0.4813   s.d. =  0.1689 

 

Possible higher order interaction: 

 

  C: STATUS 2 

 

+--------------------------------+ 

|                                | 

| Gamma coefficients in C-strata | 

|                                | 

+--------------------------------+ 

 

Least square estimate:  Gamma =  0.4458 s.d.  =  0.1650 

 

C: STATUS 2  Gamma variance     sd   weight  residual 

----------------------------------------------------- 

 1:           0.59   0.0402   0.2005  0.677   1.253 

 2:           0.06   0.1604   0.4005  0.170  -1.060 

 3:           0.24   0.1778   0.4216  0.153  -0.522 

----------------------------------------------------- 

 

Test for partial association: X² =    1.7 df = 2 p =  0.434 

 

 

Analysis of collapsibility across 3 ordinal categories 

 

Collapse of                                mean  sd    p 

----------------------------------------------------------- 

1&2:                                       0.48 0.179 0.237 

2&3:                                       0.15 0.290 0.751 

 

*** Collapsed: 2 & 3 *** 

 

1&23:                                      0.45 0.165 0.210 

 

*** Collapsed: 1 & 23 *** 

 

All groups have been collapsed 
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Figure 41. DESCRIBE DT: Analysis of partial association 

 

model: Model: DT,DC,CT 

 

 

Basetype     : Log linear 

Version      : Partial 

Relationship : DT 

 

Deviance =    2.48 

      df =       4 

       p =  0.6477 

 

 

Standardized partial association - observed margins 

 

     +TREATMEN 

     | | D:STATUS 3        | 

     T |  None  Mild mod+s | TOTAL | 

-------+-------------------+-------+ 

 Drug1 |    38     8     4 |    50 | 

 Stand.|  35.1   9.6   5.2 |  50.0 | 

 Drug2 |    21    19    10 |    50 | 

 Stand.|  23.9  17.4   8.8 |  50.0 | 

-----------------------------------+ 

 TOTAL |    59    27    14 |   100 | 

 Stand.|  59.0  27.0  14.0 | 100.0 | 

-----------------------------------+ 

 

Marginal Association statistics: 

 

           Gamma    Odds  Ln(odds) 

Observed:  0.566    3.60    1.28 

M-Stand.:  0.385    2.25    0.81 

 

Partial Association statistics 

based on the Partial Gamma: 

 

           Gamma    Odds  Ln(odds) 

Fitted:    0.394    2.30    0.83 

 

Test for gamma = 0:  p = 0.0237 (one-sided) 

 

Partial Association statistics 

based on the Mantel-Haentzel estimate: 

 

           Gamma    Odds  Ln(odds) 

Fitted:    0.370    2.18    0.78 
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Figure 42. DESCRIBE DT: Analysis of indirect effect 

model: Model: DC,CT 

 

 

Basetype     : Log linear 

Version      : Conditional independ 

Relationship : DT 

 

Deviance =    6.31 

      df =       6 

       p =  0.3895 

 

 

Fitted marginal assuming conditional 

independence 

 

     +TREATMEN 

     | | D:STATUS 3        | 

     T |  None  Mild mod+s | TOTAL | 

-------+-------------------+-------+ 

 Drug1 |    38     8     4 |    50 | 

 Fitted|  34.0  10.9   5.1 |  50.0 | 

 Drug2 |    21    19    10 |    50 | 

 Fitted|  25.0  16.1   8.9 |  50.0 | 

-----------------------------------+ 

 TOTAL |    59    27    14 |   100 | 

 Fitted|  59.0  27.0  14.0 | 100.0 | 

-----------------------------------+ 

 

Row frequencies 

 

     +TREATMEN 

     | | D:STATUS 3        | 

     T |  None  Mild mod+s | TOTAL | 

-------+-------------------+-------+ 

 Drug1 |    38     8     4 |    50 | 

   row%|  76.0  16.0   8.0 | 100.0 | 

 Fitted|  68.1  21.7  10.2 | 100.0 | 

 Drug2 |    21    19    10 |    50 | 

   row%|  42.0  38.0  20.0 | 100.0 | 

 Fitted|  49.9  32.3  17.8 | 100.0 | 

-----------------------------------+ 

 TOTAL |    59    27    14 |   100 | 

   row%|  59.0  27.0  14.0 | 100.0 | 

 Fitted|  59.0  27.0  14.0 | 100.0 | 

-----------------------------------+ 

 

Marginal Association statistics: 

 

           Gamma  s.e.    Odds  Ln(Odds) 

Observed:  0.566 0.135    3.60    1.28 

Fitted:    0.327 0.166    1.97    0.68 

 

Test for observed=fitted :  p =0.0754 
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Figure 42 presents results from fitting of a loglinear model, where it is assumed that D 

and T are conditionally independent. Apart from demonstrating the lack of power of the 

deviance, which is not able to detect the association between D and T, the main purpose 

of showing the results here is to give an idea about the size of the indirect effect of T on 

D. The two tables in Figure 42 compares the observed marginal distribution of D and T to 

the fitted marginal distribution under the assumption of no direct effect. The tables show 

both absolute and relative marginal frequencies and marginal  coefficients for both the 

observed and fitted tables. The fitted  value suggests that there is considerably indirect 

effect of about the same order of size as the estimate of the direct effect presented in 

Figure 41. Finally a test comparing observed and fitted  coefficients are not significant. 

The test is however two-sided where a one-sided test assuming that the observed  had to 

be larger than the fitted  for the indirect effect. 

 

Finally Figure 43 summarizes the results in terms of confounding and effect modificat-

ion. C was a potential effect modificator, but no evidence turned up that this was the case. 

The partial  was a little smaller than the marginal , but estimates of  coefficients fitting 

a model with no higher order interactions involving D and T suggested a somewhat 

smaller value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 43. DESCRIBE DT: Summary of results 

Summary of analysis of conditional relationship between 

STATUS 3 and TREATMEN 

 

 C:STATUS 2     Potential modificator - no evidence    

 

 

Summary statistics 

 

Marginal Gamma (all cases)        =  0.57   n =    100 

Marginal Gamma (missing excluded) =  0.57   n =    100 

Partial Gamma                     =  0.48  df =      6 
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Analysis by Markov chains 

We are currently working on implementation of methods for analysis of multivariate 

Markov Chains. At the moment three commands are available. The first is used both to 

set up and modify Markov Chain models, while the last two are used to analyze the 

transition probabilities of the model. 

 

MARKOV variables  Initiates the model in terms of repeated response 

     variables and explanatory covariates. 

 

MARKOV    Lets you modify an existing model.  

 

MTABLES variable  Creates a table of transitions and the hypotheses 

     needed to test that the model can be simplified. 

     This table can be treated in exactly the same way 

     as the other tables in DIGRAM. 

 

MTEST variable   Tests all hypotheses of conditional independence 

     implying that the model may be simplified. 

 
The UKU example discussed in this notes is an obvious candidate for a Markov Chain 

model. We ignore the presence of side effects prior to treatment and regard treatment as 

an explanatory variable. 

 

 

To initiate the Markov Chain model we write “MARKOV DCB”. DIGRAM checks that 

the three variables are posited in three different recursive levels have the same number of 

categories and the same scale type (nominal or ordinal). If these requirements were fulfil-

led, all other variables in the same recursive blocks as D, C and B would have been igno-

red
21

 while all variable from variables in earlier blocks will be treated as explanatory 

variables. The Markov Chain dialog, Figure 44, illustrates this set up. 

 

                                                           
21

 This of course is particular simple in this example as there are only one variable in each block. If we had 

three other variables in the blocks, they could either be included in the Markov structure or ignored. 

Assume that the project has to different repeated measurements in each block, D,G <- C,F <- B,E <-A,T, 

then MARKOV DGCFBE would define a model with two chains, the DCB chain as before and the GFE 

chain, which we might treat as a chain of time dependent covariates for the DCB chain. MARKOV DCB 

however defines the same model as in the UKU example. 
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Figure 44. MARKOV DCB: A Markov chain model with A and T as explanatory 

variables has been constructed. The tracking order has been set to 1 here. 

 

 

Comments on Figure 44: 

To modify the model you must select a chain of repeated measurements by entering one 

of variables in the chain field. Clicking the “Current model” button places the following 

information on the selected chain into the fields of the dialogue.  

 

 Tracking order: The number of prior measurements on which the current 

measurement is assumed to depend. 

 Covariate order: The number of current and prior measurements of time 

dependent covariates (if any) that the current measurement is assumed to 

depend on. 

 Homogeneity: The chain is homogenous if transition probabilities do not 

depend on time. 
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 Influental explanatory variables: The explanatory variables on which the 

current chain is assumed to depend. 

 

To modify the model you must first change the relevant information and click on the 

“Change model” button. In the current example tracking order was initially set to two 

(the maximum value with three measurement), but changed to one.  

 

To proceed with the analysis you must leave the Markov Chain Dialog and then enter 

either MTAB or MTEST
22

. Figure 45 shows the result of TEST after MTAB. 

 

If the table of transitions is more than 8-dimensional you have to use MTEST D instead 

of MTAB D. The results will of using MTEST D here is of course the same results as in 

Figure 45, but the table will not be available for further analyses.  

 

                                                           
22

 If the model is a model for more than one parallel chains the call of MTAB or MTEST must include a 

variable from the chain you want to analyze. 
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Figure 45: MTAB D and TEST
23

: MTAB creates a table of transitions where the 

 current state is referred to by the label of the latest variable. ‘#’ is used as the 

 label of time, if the chain is not supposed to be homogenous. 

 

                                                           
23

 Monte Carlo estimates of exact p-values are used, although the conditional distribution given marginas 

are not exactly hypergeometrical. 

Markov chain table for chain no. 1 will be created 

Trackorder = 1 

Number of covariate chains = 0 

Explanatory variables: AT 

5 variables have been selected: DCAT# 

--------------------------------- 

 

The Markov chain table: 

 

D - STATUS 3 Dim = 3 

C - STATUS 2 Dim = 3 

A - STATUS 0 Dim = 3 

T - TREATMEN Dim = 2 

# -     Time Dim = 2 

 

4 Hypotheses: 

 

HYPOTHESIS  1:  D & C  |  A T # 

HYPOTHESIS  2:  D & A  |  C T # 

HYPOTHESIS  3:  D & T  |  C A # 

HYPOTHESIS  4:  D & #  |  C A T 

 

 

****  Summary of test results  **** 

 

NSIM = 1000 tables generated for exact p-values 

 

-------------------------------------------------------------------------------------- 

                         p-values                           p-values 

Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim 

-------------------------------------------------------------------------------------- 

 1:D&C|AT#     76.4  29 0.000 0.000 (0.000-0.007)  0.66 0.000 0.000 (0.000-0.007) 1000  

 2:D&A|CT#     34.5  29 0.220 0.327 (0.290-0.366)  0.15 0.217 0.249 (0.216-0.286) 1000        

 3:D&T|CA#     23.9  19 0.200 0.290 (0.255-0.328)  0.40 0.015 0.009 (0.004-0.021) 1000      

 4:D&#|CAT     15.2  19 0.710 0.885 (0.856-0.908)  0.08 0.330 0.333 (0.296-0.372) 1000        

-------------------------------------------------------------------------------------- 
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Item analysis 

DIGRAM fits a wide range of graphical and loglinear Rasch models for dichotomous and 

polytomous (ordinal) items. The details of DIGRAM’s item analysis will be described 

elsewhere
24

. 

 

You define items scores and exogenous variables for item analysis by the following three 

commands: 

 

ITEMS variables   Selects items and calculates a summary score 

 

EXOGENOUS variables  Selects exogenous variables 

 

CUT cut-points   Defines score intervals 

 

 

Once things have been set up for item analysis, there are several commands that you may 

use. We only use one here 

 

GRM     Activates a dialog where you may define and work 

     With graphical and loglinear Rasch models 

 

 

The GRM dialog is shown in Figure 46. The model that have been fitted here is a Rasch 

model assuming the side effects measured at different times are conditionally indepen-

dent given a latent random effect representing susceptibility. We notice first that there are 

no evidence against local independence and second, that the test of global DIF
25

 discloses 

no evidence of differential effect of treatment on frequency of side effects. The presence 

of side effects thus seems to be more a question of population heterogeneity and less a 

problem of autocorrelation. 

 

Using a Rasch model for the UKU side effects is equivalent to a random effects model 

where you assume that the random effect is the same for all measurements of side effects. 

                                                           
24

 A preliminary version of the guide to DIGRAM’s item analysis is included with the current release of 

SCD. 
25

 Differential item functioning. 
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Figure 46 below show you the GRM dialogue and the test results indicating that such a 

model seems to give an adequate description of the variation of side effects after treatm-

ent. 

 
 

Figure 46: ITEMS DCB, CUT 2, EXO T, GRM: Items are selected, the score 

partitioned in two score groups, one exogenous variable (T) selected, 

and an analysis by graphical and loglinear Rasch models selected. 

 

Note, that you can only use DIGRAM to test the adequacy of the model. To estimate and 

analyze the random effect you have to export the data to other programs. For additional 

information on DIGRAM’s item analysis see Kreiner (200?). 

 

 

Gamma coefficients 

One of the main features setting DIGRAM apart from most other programs for analysis 

of multidimensional contingency tables is the possibility for analysis of ordinal categoric-

al data. These analyses are tied to the use of marginal and partial  coefficients. To appr-
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eciate the scope and limitations of methods based on these coefficients one must of 

course know how they are defined. The section here is intended partly as a short intro-

duction to  coefficients for those who are not already familiar with  coefficients and 

partly as a presentation of some new ideas about how these methods may be used. 

 

The first thing to notice is that the  coefficient is a non-parametric rank correlation. One 

may actually argue that  is nothing but Kendall’s  in disguise. It differs somewhat in the 

way ties are treated, but is otherwise based on the same ideas. To calculate a  coefficient 

for evaluation of the association between two ordinal variables, X and Y, we perform all 

possible pairwise comparisons of persons counting both cases and concordance and cases 

of discordance: 

 

Let (xi, yi) and (xj, yj) be outcomes on X and Y for two different persons. Comparison of 

these outcomes lead to  

 

 concordance  if  (xi-xj) ·(yi-yj) > 0 

 discordance  if   (xi-xj) ·(yi-yj) < 0 

 tie   if   (xi-xj) ·(yi-yj) = 0 

 

Goodman and Kruskall (1955) defines  as 

 

 




C D

C D
  

where 

 

C  =  the number of comparisons resulting in concordance 

D  =  the number of comparisons resulting in discordance 

 

and where the number of ties are disregarded. 
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 can be interpreted as an estimate of a difference between two conditional probabilities 

for possible outcomes of comparisons between two persons, 

 

 C|CD = P(Concordance|Concordance or Discordance) 

 

 D|CD = P(Concordance|Concordance or Discordance) 

 

  ≈ C|CD - D|CD 

 

Davis (1967) extends Goodman and Kruskall’s  to a partial rank correlation in the 

following way. 

 

Let X and Y be as before, but include a third variable, Z, and consider the problem of 

evaluation the conditional association between X and Y. Z may be a scalar or a vector. 

 

Instead of comparing all persons as before, we now only compare persons having the 

same values on Z. This leads to a new definition of concordance and discordance 

 

 concordance  if  (xi-xj) ·(yi-yj) > 0 and zi = zj 

 discordance  if   (xi-xj) ·(yi-yj) < 0 and zi = zj 

 tie   if   (xi-xj) ·(yi-yj) = 0 and zi = zj 

 no comparison  if and zi ≠ zj 

 

The definition of the  coefficient is the same as before 

 

 




C D

C D

p p

p p

  

 

Cp  =  the number of comparisons with zi = zj resulting in concordance 

DP  =  the number of comparisons with zi = zj resulting in discordance 
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It is easy to see that the partial  coefficient is a weighted mean of  coefficients calculat-

ed separately for different values of Z and that the partial  coefficient also can be interpr-

eted as the difference between two conditional probabilities. We refer to Agresti (1984) 

for further discussion of these coefficients. 

 

To calculate partial  coefficient for all relationships between dichotomous and/or ordinal 

variables you can invoke the following command:   

 

Gamma  Produces a matrix of partial gamma coefficients for all pairs of 

   ordinal or binary variables. Conditioning will always be with  

respect to minimal sets separators in the current project model. 

            If more than one minimal separator sets exist, the gamma value 

 presented will be the mean partial gamma coefficient for all sets. 

 

 

Note that the estimated  coefficients are partial coefficient estimated under the current 

model. Figure 47 shows the Gamma coefficients for the model shown in Figure 23. The 

output includes the same kind of model information that you would get from a SHOW G 

command to remind you about the conditions under which the coefficients were calculat-

ed. 

 

The “Toggle gamma values on/off” in the Graph window becomes visible when  coeff-

icients have been calculated. If you press this button  coefficients will be included in the 

graph for all existing edges or arrows. Note, that  coefficients for non-existing connecti-

ons between variables will not be show even though they have been calculated and. Also, 

 coefficients will not be shown for nominal variables with more than two categories. 

 

Figure 48 shows the same model as in Figure 23 with the  coefficients of Figure 47 incl-

uded.
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Figure 47. GAMMA: Partial  coefficients for the model in Figure 23. 

 

 
 

Figure 48. Interaction graph with gamma values toggled on. 

Project graph 

 

Variables   DCBAT 

STATUS 3: D *+  + 

STATUS 2: C +*+ + 

STATUS 1: B  +*++ 

STATUS 0: A   +*+ 

TREATMEN: T ++++* 

------------------------------ 

Log-linear generators/cliques: 

LEVEL 1: (DCT),(CBAT) 

LEVEL 2: (CBT),(BAT) 

LEVEL 3: (BAT) 

LEVEL 4: (AT) 

------------------------------ 

 

Partial Gamma coefficients calculated under the above model 

 

             D      C      B      A      T    

 

D:STATUS 3   .     0.588  0.418  0.301  0.481 

C:STATUS 2  0.588   .     0.631 -0.068  0.470 

B:STATUS 1  0.418  0.631   .     0.603  0.520 

A:STATUS 0  0.301 -0.068  0.603   .     0.492 

T:TREATMEN  0.481  0.470  0.520  0.492   .    
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 coefficients are used throughout DIGRAM for two different reasons. First,  coeffic-

ients used as test statistics for tests of (conditional) independence of dichotomous and 

ordinal variables have a much stronger power against alternatives assuming monotonous 

relationships between variables than standard tests assuming that all variables are nomin-

al. Second,  coefficients are informative descriptive measures – correlation coefficients – 

summarizing trends in a much more manageable way than observed tables of counts or 

tables of parameters of logistic and loglinear models.  

 

The problem with  coefficients is that they are non-parametric measures of association. 

This means that comparison of  coefficients calculated under different conditions not 

always will be meaningful in the same was as comparisons of parameters of loglinear and 

logistic models will be. The fact for instance that  coefficients describing the strength of 

association between two variables, A and B, are the same for men and women does not 

automatically imply that there is no higher order interaction between Sex and A and B. 

To make matters even more complex the opposite is also true: A difference between  

coefficients for men and women does not imply that there has to a higher order interact-

ion between Sex and A and B.  

 

Restrictions on  coefficient do not in general define the type of loglinear models that we 

are using for analysis in DIGRAM.  

 

There is, however, one exception to this dismal situation. For two dichotomous variables 

an analysis based on partial  coefficients will be formally equivalent to a so-called 

Mantel-Haenszel analysis of odds ratio values defining proper loglinear and/or logit 

models. 

 

To see this consider a simple 22 table of counts, 

 

a b 

c d 
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The odds-ratio, , for association in such a table is given by the cross-product ratio, 

 

 
ad

bc
 

 

The  coefficient on the other hand is given by   

 

 




ad bc

ad bc
 

 

which is well-known as Yule’s Q. It is easy to see, that  may be rewritten as a function 

of  and visa versa: 

 

 





















ad bc

ad bc

(
ad

bc
1)

(
ad

bc
1)

1

1
 

 











1

1
 

 

The logit value =ln() is approximately equal to 2· for moderate values of . 

 

If we assume that  and  values are constant across different levels of one or more strati-

fying variables define a loglinear model with no higher order interaction involving the 

two dichotomous variables. The common odds ratio value may be estimated by the so-

called Mantel-Haenszel estimator, MH, which is a weighted mean of odds ratio values 

calculated in each strata, while the partial  coefficient, par – a weighted mean of  

coefficients in the different strata – estimates the common  value. 

 

The weights used for these two statistics do not result in estimates being one-to-one  

functions of each other. Both estimates are, however, consistent and the results should 

therefore be fairly close to each other: 
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


par

MH

MH

~




1

1
 

 

 

If you want to compare partial  coefficients to Mantel-Haenszel estimates for binary 

variables you can use the following command. Remember that the relationship between 

Mantel-Haenszel estimates and partial  coefficients require that there is no higher order 

interaction. If the estimates are different it suggests that higher order interaction – effect 

modification – is at work. 

 

MANTEL-HAENSZEL var1 var2 Calculates both Mantel –Haenszel estimates 

and partial gamma coefficient for binary  

variables. 

 

 

For ordinal variables with more than two categories the situation is more complicated. 

Instead of working directly with observed partial  coefficients we suggest that an anal-

ysis of partial  coefficients calculated for tables fitted to specific loglinear models might 

be helpful. You can find traces of this idea in some of the results from the DESCRIBE 

procedure in the current version of DIGRAM and it will be developed further as part of 

the procedure for analysis by loglinear models under development. 

 

 

Analysis of category collapsibility in multidimensional contingency tables 

 

This section gives a brief introduction to the problem of category collapsibility and how it 

may be analyzed by DIGRAM. A more systematic discussion of the whys and hows of 

analysis of category collapsibility is provided by Kreiner and Gundelach (200?).  

 

The table in Figure 48 shows the distribution of UKU side effects (C and D) at the second 

and third measurement for the two different drugs. Note that the table is organized as a 
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two-way table with drugs in the columns and with rows defined by a stacked variable 

combining side effects at the two different measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. UKU side effects for two different drugs   

 

We say that a subset of row categories is collapsible if the conditional distribution of the 

column variable is the same for all categories within the subset. It is immediately seen 

that rows 2, 4, and 6 are collapsible in Figure 48. Collapsibility of column categories may 

be defined in the same way as for row categories. In the example used here collapsibility 

of the two column categories implies that side effects are independent of drug. 

 

The analysis of category collapsibility performed by DIGRAM is an automatic stepwise 

procedure where each step consist of 

 

1) pairwise comparison of row categories 

2) pairwise comparison of column categories 

3) creation of a new table where the least significant row or column 

categories are collapsed if the Boferroni corrected p-value is larger than 

0.05. 

 

 

 

    Column variable: T 

DC Row     1    2 Total 

----------------------- 

11   1   34   12    46 

21   2    3    6     9 

31   3    2    2     4 

12   4    3    6     9 

22   5    3    8    11 

32   6    1    2     3 

13   7    1    3     4 

23   8    2    5     7 

33   9    1    6     7 

   TOT   50   50   100 
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The analysis may be invoked by two different commands: 

 

COLLAPS column variable row variables Stepwise analysis of category  

collapsibility. Both column and row 

categories will be collapsed. 

 

MCA       Stepwise analysis of category 

collapsibility. Collapse of row or 

column collapsibility may be 

deselected. 

 

 

Figures 49 – 52 show the result of the analysis of the table in Figure 48 following a 

COLLAPS TDC command. The difference between the MCA command and the 

COLLAPS command will be described at the end of this section. 

 

The test results motivating collapse of categories are shown in Figure 49. Rows 2,4, and 6 

are collapsed in the first two steps. The third step collapses rows 5 and 8. The fourth step 

collapses row 7 with row 5+8. Rows 2+4+6 are collapsed with rows 5+7+8 in fifth step. 

Step 6 and 7 adds first row 3 and second row 9 to the collapsed row creating one row 

combining all rows from 2 to 9. Finally, the last step rejects collapsibility of row no. 1 

and rows 2-9.  Row no. 1 contains persons without side effects. The end result therefore 

is the 22 table shown in Figure 50 summarizing the difference between drugs to a 

question of whether or not there are side effects at all. 
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Figure 49. Stepwise collapse of the rows of the table in Figure 48 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. The collapsed table. 

 

  +--------------------------------------------------------------+ 

  |                                                              | 

  | Analysis of collapsibility of categories by unrestricted MCA | 

  |                                                              | 

  +--------------------------------------------------------------+ 

 

    lr df      p   gamma p(2-sided) 

  ----------------------------------------------- 

  -0.0  1 1.0000   0.000 1.0000 rows  :  2 and 4 

   0.0  1 1.0000   0.000 1.0000 rows  :  2 4 and 6 

   0.0  1 0.9522  -0.032 0.9523 rows  :  5 and 8 

   0.0  1 0.9095   0.071 0.9083 rows  :  5 8 and 7 

   0.2  1 0.6653   0.143 0.6651 rows  :  2 4 6 and 5 7 8 

   0.6  1 0.4320  -0.395 0.4697 rows  :  2 4 5 6 7 8 and 3 

   1.0  1 0.3116   0.475 0.2641 rows  :  2 3 4 5 6 7 8 and 9 

  20.2  1 0.0000   0.741 0.0000 rows  :  1 and 2 3 4 5 6 7 8 9 

 

no further collaps:  Bonferoni adjusted pmax = 0.0000 

 

 

Test results for all remaining rows and columns 

 

 

    lr df      p   gamma p(2-sided) 

----------------------------------------------- 

  20.2  1 0.0000   0.741 0.0000 rows   : 1 and 2 3 4 5 6 7 8 9 

 

 

Collapsed row distributions (sorted): 

 

 Row     1     2       n    Rows included 

 

   2  29.6  70.4      54    2 3 4 5 6 7 8 9 

   1  73.9  26.1      46    1 

 

Collapsed column distributions (sorted): 

 

 Row     1     2            Rows included 

 

   2  32.0  76.0            2 3 4 5 6 7 8 9 

   1  68.0  24.0            1 
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The result of the analysis is finally summarized in a table, Figure 51, containing the row 

variables where each cell contains the number of cases and the distribution of the column 

variable. It is not useful in this particular case, but is often useful when the results are 

more complicated than those shown in Figure 50.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Row patterns after collapse 

 

 

The analysis illustrated above is based on unrestricted comparisons of rows where each 

row category is compared with all other categories. If one or more of the variables incl-

uded in the rows is an ordinal variable the analysis will be repeated utilizing a strategy for 

restricted comparisons of nearest neighbors. 

 

  +-----------------------+ 

  |                       | 

  | Table of row patterns | 

  |                       | 

  +-----------------------+ 

 

        C 

 T      1      2      3 

 

 1     46      9      4 

    73.91  29.63  29.63 

    26.09  70.37  70.37 

 

 2      9     11      3 

    29.63  29.63  29.63 

    70.37  70.37  70.37 

 

 3      4      7      7 

    29.63  29.63  29.63 

    70.37  70.37  70.37 
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The row categories are defined and ordered in the setup below: 

 

  D  

C 1 2 3 

1 1 2 3 

2 4 5 6 

3 7 8 9 

 

Both row variables are ordinal variables. The strategy for restricted comparisons only 

permits comparisons of rows 1 & 2, 1 & 4, 2 & 3, 2 & 5, 3 & 6, 4 & 5, 4 & 7, 5 & 6, 5 & 

8, 6 & 9, 7 & 8 and 8 & 9. If C had been nominal instead of ordinal comparisons would 

have been permitted for rows 1 & 7, 2 & 5 and 3 & 9 as well. 

 

Figure 52 below summarizes the results of the restricted analysis. The end result is in this 

case the same as for the unrestricted analysis, but the steps are somewhat different. 

 

Rows 5 and 8 are collapsed first. The nearest neighbors of the collapsed (5+8) is rows 2, 

4, 6, 7, and 9. In the second step all these rows are consequently compared to (5+8). 

Figure 52 shows that row (5+8) and row 7 are collapsed in the second step. 

 

 

 

 

 

 

 

 

 

 

Figure 52. Restricted stepwise MCA 

 

 

    lr df      p   gamma p(2-sided) 

----------------------------------------------- 

   0.0  1 0.9522  -0.032 0.9523 rows  :  5 and 8 

   0.0  1 0.9095   0.071 0.9083 rows  :  5 8 and 7 

   0.0  1 0.8290  -0.143 0.8343 rows  :  5 7 8 and 6 

   0.1  1 0.7651   0.125 0.7686 rows  :  2 and 5 6 7 8 

   0.1  1 0.8210  -0.091 0.8234 rows  :  2 5 6 7 8 and 4 

   0.6  1 0.4320  -0.395 0.4697 rows  :  2 4 5 6 7 8 and 3 

   1.0  1 0.3116   0.475 0.2641 rows  :  2 3 4 5 6 7 8 and 9 

  20.2  1 0.0000   0.741 0.0000 rows  :  1 and 2 3 4 5 6 7 8 9 

 

no further collaps:  Bonferoni adjusted pmax = 0.0000 
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The MCA command gives you a little more freedom to determine how the analysis of 

category collapsibility should proceed. Figure 53 shows the dialogue form shown after 

the MCA command where you must enter the column and row variables and decide 

whether or not both column and rows should be compared and whether or not you want 

an restricted and/or unrestricted analysis. 

 

 

Figure 53. The MCA dialogue 

 

It may be argued that the stepwise analysis of category collapsibility illustrated above is 

an example of the most shameless type of exploratory analysis conceivable. I do not 

unreservedly subscribe to this point of view, but I nevertheless think that it is fair to issue 

some cautious remarks concerning the use of this procedure. The analysis is exploratory. 

It is meant to simplify the description of fairly complex relationships and it should only 

be used when other evidence, e.g. significant tests for higher order interaction, imply that 

relationships actually are complex. It is not meant as a procedure for digging out 

evidence of complex higher order interactions. The sometimes astronomical number of 

comparisons to be made and the large number of cells rows with fairly few cases, implies 

an uncomfortably high risk of making a large number of type II errors along the way. 

 

As I see it, analysis of category collapsibility is a descriptive analysis that you may use to 

describe the results of the analysis. It may however also be useful in the initial data 

analysis when you have to decide how many categories you need for the project variab-
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les. If two or more categories of a variable, A, can be collapsed in all two-way tables 

including A and one of the other project variables then it suggests that A should be red-

efined for the project by collapse of these categories.   

 

To see whether this is possible you may use the COLLAPS command with reference to 

nothing but A: 

 

COLLAPS variable  Analysis of collapse of the categories of the 

variable in all possible two-way tables 

containing the variable. 

 

The output of following this command contains of test results comparing all pairs of 

categories of the variable followed be output from the stepwise analysis described above. 
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Appendix 1: The Graph editor 
 

 

The appearance of the graph shown in Figure 9 may be edited in several different ways 

using the buttons and the track bar of the graph form. Figure A.1 below thus shows the 

same graph as Figure 9 with boxes drawn around the recursive blocks, with variable nam-

es rather than variable labels and with the with the position of some variables changed to 

fit the boxes, with  coefficients for all edges of the model. Node sizes have also been 

adjusted the better to accommodate the variable names. Finally a right click on the edge 

between the PHYSCOND and EDUC variables produced the edge report shown to the 

right of the graph.  

 

Figure A1. An edited version of the independence graph shown in Figure 9 
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Three buttons permit you to move nodes and delete or add edges. Having clicked one of 

these buttons you must first click on one node and then either click on a new position of 

this node or click on another node where you either want to add or delete a connection. 

The color of the first node selected changes to remind you what you are doing. A node to 

be moved becomes black. A node attached to an edge that you want to include in the 

graph turns green while a node connected to an edge that you want to delete turns red. 

 

The two track bars to the left of the graph may be used to change the size of the nodes 

and the size of the font used for variable labels and names.  

 

Rightclicking on a variable produces the variable report form shown in Figure A.2 

showing both the definition and the marginal distribution of the variable.The information 

written in black may be edited. In the example in Figure A.2 V291 is changed to Sex. 

Click on the “Check variable definitions” button to make sure that the edited information 

is acceptable. If this is the case the contents of the new VAR file will be shown instead of 

the distribution of the variable and the  “Use new variable definitions” button will be 

enabled. Click on this button to implement the edited variable definitions. The VAR 

and/or CAT files will be overwritten depending on the changes you have suggested. New 

SYS and TAB files will be generated if you have changed the number of categories or the 

cutpoints defining categories. 

 

WARNING: This procedure has not been properly tested yet. You are therefore 

advised to make a copy of the variable definitions before you try to use this. 
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Figure A.2 Variable report after Rightclicking on V291  
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Appendix B: Coexisting with other programs 

 

Instead of spending time on development of software for methods that already exists in 

other programs it makes more sense simply to move to these programs for the analysis. 

To make the process of moving between easier you may use DIGRAM to generate files 

that these programs may read. 

 

Click on the Data menu to get an idea about the programs currently being supported in 

this way by DIGRAM. We are not quite ready with everything here. Some of these 

export functions have not been tested yet and the list may eventually be expanded, but 

Figure B1 nevertheless should give you an idea about what we are aiming at. DIGRAM 

will issue a short report on the files created for the other programs.  

 

 

 

Figure B1. List of export items on the Data menu 
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